9th math new book exercise 3.3 | Notes Punjab
9th math new book exercise 3.3 | Notes Punjab

9th math new book exercise 3.3

9th math new book exercise 3.3

9th math new book exercise 3.3 solution

Q1  For A = { 1,2,3,4 } find the following relations in A. State the domain and range of each relation.

(i)  { ( x , y ) | y = x }

(ii)  { ( x , y ) | y + x = 5 }

(iii)  { ( x , y ) | x + y < 5 }

(iv)  { ( x , y ) | x + y > 5 }

Solution:-

Fist we’ll find AxA

AxA = { (1,1),(1.2),(1,3),(1,4),(2,1),(2.2),(2,3),(2,4),(3,1),(3.2),(3,3),(3,4),(4,1),(4.2),(4,3),(4,4) }

(i):- { (1,1),(2,2),(3,3),(4,4) }
(ii):- { (1,4),(2,3),(3,2),(4,1) }
(iii):- { (1,1),(1,2),(1,3),(2,1),(2,2),(3,1) }
(iv):- { (2,4),(3,3),(3,4),(4,2),(4,3),(4,4) }

========================================

Q2 Which of the following represent functions and of which type

9th Math New Book Exercise 3.3 Notes
9th Math New Book Exercise 3.3 Notes

========================================

Q3 If

$$g(x)\;=\;3x+2\\h(x)\;=\;x^2+1$$

then find

(i)  g(0)

(ii)  g(-3)

(iii)  g(2/3)

(iv)  h(-1)

(v)  h(-4)

(vi)  h(-1/2)

Solution:-
(i):-

g(x) = 3x + 2

g(0) = 3(0) + 2

= 0 + 2 = 0

(ii):-

g(x) = 3x + 2

g(-3) = 3(-3) + 2

= -9 + 2 = – 7

(iii):-

g(x) = 3x + 2

g(2/3) = 3(2/3) + 2

= 2 + 2 = 4

(iv):-

$$h(x)\;=\;x^2+1\\\\h(1)\;=\;{(1)}^2+1\\\\=\;1\;+\;1\;=\;2$$

(v):-

$$h(x)\;=\;x^2+1\\\\h(-4)\;=\;{(-4)}^2+1\\\\=\;16\;+\;1\;=\;17$$

(v):-

$$h(x)\;=\;x^2+1\\\\h(\frac{-1}2)\;=\;{(\frac{-1}2)}^2+1\\\\=\;\;\frac14\;+\;1\;\;=\;\;\frac54$$

========================================

Q4 Given that f(x) = a x + b + 1, where a and b are constant numbers. If  f(3) = 8 and f(6) = 14, then find the value of a and b.

f(x) = a x + b + 1

f(3) = a(3) + b + 1

f(3) = 3a + b + 1

8 = 3a +b + 1

8 – 1  = 3a + b

7 = 3a + b

3a + b = 7  (i)
f(x) = a x +b + 1

f(6) = a(6) + b + 1

f(6) = 6a + b + 1

14 = 6a + b + 1

14 -1 = 6a + b

13 = 6a + b

6a + b = 13 (ii)
Subtracting eq (ii) from eq (i)

3a + b – 6a – b = 7 – 13

-3a = -6

a = -6/-3

a = 2

Putting a = 2 in equation (i)

3a + b = 7  (i)

3(2) + b = 7

6 + b = 7

b = 7 -6

b = 1

========================================

Q5  Given that g(x) = a x +b + 5 where a and b are constant numbers. If g(-1) = 0 and g(2) = 10, find the values of a and b.

g(x) = a x + b + 5

g(-1) = a (-1) + b + 5

0 = – a + b + 5

a – b = 5 (i)
g(x) = a x +b + 5

g(2) = a (2) +b + 5

10 = 2a + b + 5

10 – 5 = 2a +b

5 = 2a + b

2a + b = 5 (ii)
Adding Eq (i) and (ii)

a -b + 2a + b = 5 + 5

3a = 10

a = 3/10

Putting the value of a in equation (i)

a – b = 5

10/ 3 – b= 5

10/3 – 5 = b

10/3 – 15 = b

-5/3 = b

b = -5/3

======================================

Q6 Consider the following defined by f(x) = 5 x + 1 f(x) = 32, find the value of x.

f(x) = 5x + 1

32 = 5x + 1

32 – 1 = 5x

31 = 5x

31/5 = x

x = 31/5

Q7 Consider the function

$$f(x)\;=c\;x^2+d$$

Where c and d are constant numbers. If f(1) = 6 and f(-2)=10, then find the values of c and d

Solution:-

$$f(x)\;=c\;x^2+d\\\\f(1)\;=\;c{(1)}^2\;+d\\\\6\;=\;c(1)\;+d\\\\c+d=6\;\;(i)$$

$$f(x)\;=c\;x^2+d\\\\f(1)\;=\;c{(-2)}^2\;+d\\\\10\;=\;c(4)\;+d\\\\10\;=4c\;+\;d\\\\4c\;+\;d\;=\;10\;\;(ii)$$

Subtracting equation (i) from equation (ii)

4c+d -(c+d) = 10-6

4c+d-c-d = 4

3c = 4

c = 4/3

Putting the value of c in Equation (i)

6 = c + d

6 = 4/3 + d

d = 6- 4/3

d = 14/3

========================================

Check! Some important links below


9th math new book exercise 3.2 notes

You tube channel 9th class New syllabus

Home Page Notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *