9th Math New book Exercise 3.1 Notes
9th Math New book Exercise 3.1 Notes

9th New book Ex3.1 | Notes

9th New book Ex3.1

9th New book Ex3.1 tells us how to write a set in three different ways. It also tell us about different types of a set, especially subsets and power set.

Q1 Write the following sets in set builder notation:

General form:

$$\{\;x\in S\vert condition\;on\;x\}$$

x represents the variable  and S represents the set. Condition tells about the properties of the elements.

(i)  {1,4,9,16,25,….,484}

$$\{x\vert x=n^2,n\in\mathbb{N}\wedge1\leq n\leq22\}$$

We can also write it as

$$\{x\in\mathbb{N}\;\vert\;x=n^2\wedge1\leq n\leq22\}$$

(ii)  {2,4,8,16,32….150}

$$\{x\vert\;x=2^n,n\in\mathbb{N}\;\wedge x\leq150\}$$

{2,4,8,16,32….256}

$$\{x\vert\;x=2^n,n\in\mathbb{N}\;\wedge1\leq n\leq8\}$$

(iii)  {-1000,……..-1,0,1,………..,1000}

$$\{x\;\vert\;x\in\mathbb{Z}\;\wedge-1000\leq x\leq1000\}$$

(iv) {6,12,18,….,120}

$$\{x\;\vert\;x\in\mathbb{N}\;\wedge x=6n,-1\leq n\leq20\}$$

(v) {100,102,104,….,400}

$$\{x\vert x\in\boldsymbol E\boldsymbol{\mathit\;}\mathit\wedge\mathit\;\mathit{100}\mathit\;\mathit\leq\mathit\;x\mathit\;\mathit\leq\mathit\;\mathit{400}\mathit\}$$

(vi)  {1,3,9,27,81……}

$$\{x\vert x=3^n,n\in\boldsymbol W\boldsymbol{\mathit\;}\mathit\wedge\mathit\;\mathit0\mathit\;\mathit\leq\mathit\;n\mathit\}$$

(vii)  {1,2,4,5,10,25,50,100}

$$\{x\;\vert\;x\in\mathbb{N}\;\wedge\;x\;divides\;100\boldsymbol{\mathit\;}\mathit\}$$

We can also write as {x | x is a factor of 100 }

(viii)  {5,10,15,….,100}

$$\{x\vert\;x=5n,\;n\in\mathbb{N}\;\wedge\;1\;\leq\;n\;\leq\;20\;\}$$

(ix)  The set of all integers from -100 to 100

$$\{x\;\vert\;x\in\mathbb{Z}\;\wedge-100\leq x\leq100\}$$

====================================================================================

Q 2  Write each of the following sets in the tabular form:

(i) $$\{x\vert\;x\;is\;a\;multiple\;of\;3\;\wedge\;x\;\leq\;35\;\}$$

{3,6,9,12,15,18,21,24,27,30,33}

(ii) $$\{x\vert\;x\in\mathbb{R}\;\;\wedge\;2x\;+1=0\;\}$$

2x+1=0
2x=-1
x= -1/2
Hence in tabular form it is {-1/2}

(iii)  $$\{x\vert\;x\in\mathbb{P}\;\wedge\;x<\;12\;\}$$

{2,3,5,7,11}

(iv)

{ x | x is a divisor of 128 }

{1,2,4,8,16,32,64,128}

(v)  $$\{x\vert\;x=2^n,n\in\mathbb{N}\wedge n<8\}$$

{2,4,8,16,32.64.128}

(vi)  $$\{x\vert\;x\in\mathbb{N}\wedge\;x+4\;=\;0\}$$

x+4=0
x=-4 But -4 is not a natural number so set is empty and in tabular form it can be written as { }

(vii)  $$\{x\vert\;x\in\mathbb{N}\wedge\;x=x\}$$

{1,2,3,4……………..}

(viii)  $$\{x\vert\;x\in\mathbb{Z}\;\wedge\;3x+1\;=\;0\}$$

3x+1 = 0
3x= -1
x = -1/3 But -1/3 is not an integer hence set is empty So in tabular form we will write { }.

====================================================================================

Q3 Write two proper subset of each of the following set:

(i) :-  {a, b, c}

{ } , {a} , {b} , {c} ,{a , b} , {a , c} , {b , c} , {a , b , c}

(ii) :-   {0 , 1}

{ } , {o} , {1} , {0 , 1}

(iii) :-    N

{ } , {1}

(iv) :-    Z

{ } , {1}

(v) :-      Q

{ } , {1}

(vi) :-     R

{ } , {1}

(vii) :-  $$\{x\vert x\in\mathbb{Q}\;\wedge0<x\leq2\}$$

{ } , {1}

====================================================================================

Q4 ;-  Is there any set which has no proper subset? If so , name that set.

Yes , empty set has no proper subset.

Say A = { }

P (A) = { }

====================================================================================

Q5 :-  what is the difference between {a , b} and {(a , b)}?

{ a , b} has two elements ‘a’ and ‘b’.

{(a , b)} has only one element which is {a , b}

====================================================================================

Q6 :- What is the number of element of the power set of each of the following set?

(i) :- { }

Number of element of power set of { } $$2^0\;=\;1$$

(ii) :- {0 , 1}

Number of element of power set {0 , 1} = $$2^2\;=\;4$$

(iii) :- {1 , 2 , 3 , 4 , 5 , 6 , 7}

Number of element of power set {1 , 2 , 3 , 4 , 5 , 6 , 7} = $$2^7\;=\;128$$

(iv) :- {a, {b , c}}

Number of element of power set {a, {b , c}} = $$2^2\;=\;4$$

(v) :- { {a , b} , { b , c} , {d , e} }

Number of element of power set { {a , b} , { b , c} , {d , e} } = $$2^3\;=\;8$$

====================================================================================

Q7  Write down the power set of each of the following sets:

(i)
A = { 9 , 11 }

P(A) = { { } , {9} , {11} , { 9 , 11}}

(ii)
$$B=\;\{\;+\;,\;-,\;\times,\;\div\}$$

$$P\;(B)\;=\;\{\;\{\;\},\{\;+\;\}\;,\;\{-\}\;,\;\{\times\}\;,\;\{\div\}\;,\\\{+\;,\;-\}\;,\;\{+,\;\times\}\;,\;\{+\;,\;\div\}\;,\;\{-\;,\;\times\}\;,\\\{-\;,\;\div\}\;,\;\{\times,\;\div\}\;,\;\{+\;,\;-\;,\;\times\}\;,\\\{\;+\;,\;\times\;,\;\div\}\;,\;\{+,-,\div\},\;\{\;-\;,\;\times,\;\div\;\},\\\{\;+\;,\;-\;,\;\times\;,\;\div\;\}\;\}$$

(iii)
$$C\;=\;\{\;\phi\;\}$$

$$P(C)\;=\{\;\{\;\}\;,\;\{\;\phi\;\}\;\}$$

$$P(C)\;=\{\;\{\;\}\;,\;\{\;\phi\;\}\;\}\;=\;\{\;\{\;\}\;,\;\{\;\{\;\}\;\}\;\}$$

(iv)
D = { a , {b , c} }

P (D) = {   { } , {a} , { {b , c} } , { a , {b , c} }

====================================================================================

Check! Some important links below


Math 9th chapter 1 real numbers notes

You tube lectures Math class 9 chapter 3

Home Page Notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *