MCQs 11th Class Math Chapter 2 Federal Board
MCQs 11th Class Math Chapter 2 Federal Board

MCQs 11th Class Math Chapter 2 Federal Board

MCQs 11th Class Math Chapter 2 Federal Board

MCQs 11th Class Math Chapter 2 Federal Board

(i):-

If order of A is m x n and order of B is n x p then the order of AB is:

(a) n x p     (b) m x p

(c) p x m    (d) n x n

Option b is correct.

=========================================

(ii):-

$$If\;A\;is\;row\;matrix\;of\;order\;1\times n\\the\;order\;of\;A^tA\;is\;:\\(a)\;1\;\times\;n\\(b)\;n\;\times\;1\\(c)\;1\;\times\;1\\(d)\;n\;\times\;n\\$$

option d is correct.

=========================================

(iii):-

$$For\;an\;element\;{\mathrm a}_{\mathrm{ij}}\;\mathrm{of}\;\mathrm a\\\mathrm{square}\;\mathrm{matrix}\;\mathrm A:\\(\mathrm a)\;{\mathrm a}_{\mathrm{ij}}\;=\;{(-1)}^{\mathrm i+\mathrm j}\;{\mathrm A}_{\mathrm{ij}}\\(\mathrm b)\;{\mathrm a}_{\mathrm{ij}}\;=\;{(-1)}^{\mathrm i+\mathrm j}\;{\mathrm M}_{\mathrm{ij}}\\(\mathrm c)\;\frac{{\mathrm A}_{\mathrm{ij}}}{{\mathrm M}_{\mathrm{ij}}}\;=\;{(-1)}^{\mathrm i+\mathrm j}\\(\mathrm d)\;{\mathrm a}_{\mathrm{ij}}\;=\;\;{\mathrm M}_{\mathrm{ij}}$$

Option c is correct.

=========================================

(iv):-

$$\mathrm{If}\;\mathrm A\;\mathrm{is}\;\mathrm{any}\;\mathrm{square}\;\mathrm{matrix}\\\mathrm{then}\;\mathrm A\;\mathrm{and}\;\mathrm A^{\mathrm t}\;\mathrm{are}\;\mathrm{always}\\\mathrm{conformable}\;\mathrm{for}\\(\mathrm a)\;\;\mathrm{Addition}\;\\(\mathrm b)\;\;\mathrm{Multiplication}\\(\mathrm c)\;\;\mathrm{Subtraction}\\(\mathrm d)\;\;\mathrm{All}\;\mathrm{of}\;\mathrm{these}$$

Option d is correct.

=========================================

(v):-

$$\mathrm{If}\;\mathrm A\;is\;a\;\mathrm{square}\;\mathrm{matrix}\;of\;order\\3\times3\;and\;\left|A\right|=3\;then\;the\\value\;of\;\left|adj\;A\right|\;is\;:\\\\(\mathrm a)\;3\;\;\;(\mathrm b)\;\frac13\;\;\;(\mathrm c)\;9\;\;\;(\mathrm d)\;\;6$$

Option c is correct.

=========================================

(vi):-

$$For\;the\;square\;matrix\;A\;of\;order\\3\times3\;with\;\left|A\right|=9;\;A_{21}=2;\\A_{22}=3;\;A_{22}=3;\;A_{23}=-1;\\a_{21}=\;-1;\;a_{23}=2\;then\;the\\Value\;of\;a_{22}\;is\\\\$$

(a) 2  (b) 3  (c) 9  (d) -1

No one is correct

$$\left|A\right|=a_{21}A_{21}+a_{22}A_{22}+a_{23}A_{23}\\9=(-1)(2)+a_{22}(3)+(2)(-1)\\9+4\;=\;3\;a_{22}\\a_{22}=\frac{13}3\\\\$$

=========================================

(vii):-

System of homogeneous linear equations has non-trivial solution if:

$$(a)\;\left|A\right|>0\;\;\;(b)\;\left|A\right|<0\\(c)\;\left|A\right|=0\;\;\;(d)\;\left|A\right|\neq0\\\\$$

Option c is correct

=========================================

(viii):-

For non-homogeneous system of equations; the system is inconsistent if:

$$(a)\;Rank\;A=\;Rank\;A_b\\(b)\;Rank\;A\neq\;Rank\;A_b\\(c)\;Rank\;A<\;no.\;of\;variables\\(d)\;Rank\;A_b>\;no.\;of\;variables$$

Option b is correct

=========================================

(ix):-

For non-homogeneous system of equations with three variables system will have unique solution if

$$(a)\;Rank\;A<3\\(b)\;Rank\;A_b<3\\(c)\;Rank\;A=Rank\;A_b=3\\(d)\;\;Rank\;A=Rank\;A_b<3$$

Option c is correct

=========================================

(x):-

A system of non-homogeneous equations having infinite many solutions can be solved by using

(a) Inversion method

(b) Cramer’s rule

(c) Gauss-Jordan method

(d) all of these

Option c is correct

=========================================

Check! Some important links below


11th Class Math Paper 2025 Solution Federal Board

MCQs 11th Class Math Chapter 2 Federal Board Video

Home Page notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *