11th Class Math Solved Paper 2025 Federal Board
11th Class Math Solved Paper 2025 Federal Board

11th Class Math Paper 2025 Federal Board

11th Class Math Paper 2025 Federal Board

11th Class Math Paper 2025 Federal Board. Class 11th Math Paper 2025 Federal Board

Q2 :- Solve the following parts.

i):-  Solve the quadratic equation

$$3z^2+2z+2=0\;\;,\;\;Z\in\mathbb{C}$$ by completing square method.

$$3z^2+2z+2=0\;\\\frac{3z^2+2z+2}3=\frac03$$

$$\frac{3z^2}3+\frac{2z}3+\frac23=0\\z^2+\frac{2z}3+\frac23=0$$

$$(z^2)\;+\;2\;(z)\;(\frac13)\;\\+{(\frac13)}^2-{(\frac13)}^2+\frac23=0$$

$${(z+\frac13)}^2-\frac19+\frac23=0\\{(z+\frac13)}^2=\frac19-\frac23$$

$$=\frac{1-6}9\\\sqrt{{(z+\frac13)}^2\;}=\pm\sqrt{\frac{-5}9}$$

$$z=\frac{-1}3\pm\frac{\sqrt{5i}}3\\=\frac{-1\pm\sqrt{5i}}3$$

i):-   A triangular park has its three corners located at points A(2, 3, 1) , B(5, 7, 2) , C(1, 4, 3). Find area of the park using cross product of vector.

$$\overrightarrow{AB}\;=(3,\;4,\;1)\\\overrightarrow{AC}=(-1,\;1,\;2)\;$$

$$\overrightarrow{AB}\times\overrightarrow{AC}=\begin{vmatrix}\widehat i&\widehat j&\widehat k\\3&4&1\\-1&1&2\end{vmatrix}$$

$$=\widehat i(8-1)-\widehat j(6+1)+\widehat k(3+4)\\=7\widehat i-7\widehat j+7\widehat k$$

$$\left|\overrightarrow{AB}\times\overrightarrow{AC}\right|\\=\sqrt{{(7)}^2+{(-7)}^2+{(7)}^2}$$

$$=\sqrt{49+49+49}\\=\sqrt{147}\\=7\sqrt3$$

Area of triangle:-

$$=\frac12\left|\overrightarrow{AB}\times\overrightarrow{AC}\right|\\=\frac12(7\sqrt3)\\=\frac{7\sqrt3}2square\;units$$

===============================================================

ii):- Verify the Pascal’s Identity.

$$\begin{pmatrix}n\\r\end{pmatrix}+\begin{pmatrix}n\\r-1\end{pmatrix}=\;\begin{pmatrix}n+1\\r\end{pmatrix}$$

$${}^nC_r=\begin{pmatrix}n\\r\end{pmatrix}=\frac{n!}{r!\;(n-r)!}$$

$${}^nC_{r-1}=\begin{pmatrix}n\\r-1\end{pmatrix}=\frac{n!}{(r-1)!\;(n-(r-1))!}$$

$$=\frac{n!}{(r-1)!\;(n-r+1))!}$$

Lets Consider L.H.S

$$L.H.S=\frac{n!}{r!\;(n-r)!}+\frac{n!}{(r-1)!\;(n-r+1)\;)!}$$

$$L.H.S\;=\frac{n!}{r\;(r-1)!\;(n-r)!}\\+\frac{n!}{(r-1)!\;(n-r+1)\;)\;(n-r)!}$$

Lets Consider L.C.M

$$L.H.S\;=\;\frac{r\;(n!)\;+(n-r+1)\;n!}{(r-1)!\;(n-r)!\;r(n-r+1)}$$

$$=n!\;\left\{\frac{r+n-r+1}{(r-1)!\;(n-r)!\;r\;(n-r+1)}\right\}$$

$$=\frac{n!\;(n+1)}{r\;(r-1)!\;\;(n-r+1)\;(n-r)!\;}\\=\frac{(n+1)!}{r!\;\;(n+1-r)!}$$

$$=\;\begin{pmatrix}n+1\\r\end{pmatrix}\\=\;R.H.S$$

ii):- Verify that $$Sin\theta.Sin\;(\frac{\mathrm\pi}3-\theta).\\Sin\;(\frac{\mathrm\pi}3+\theta)=\frac14Sin\;3\theta$$

$$L.H.S=Sin\theta.Sin\;(\frac{\mathrm\pi}3-\theta).Sin\;(\frac{\mathrm\pi}3+\theta)$$

$$=Sin\theta\;(Sin\frac\pi3Cos\theta-Cos\frac{\mathrm\pi}3Sin\theta)\\(Sin\frac{\mathrm\pi}3Cos\theta+Cos\frac{\mathrm\pi}3Sin\theta)$$

$$=Sin\theta\;(\frac{\sqrt3}2Cos\theta-\frac12Sin\theta)\\(\frac{\sqrt3}2Cos\theta+\frac12Sin\theta)$$

$$=Sin\theta\;(\;(\frac{\sqrt3}2Cos^2\theta)-(\frac{\sqrt3}2Sin^2\theta)\;)\;$$

$$=Sin\theta\;(\;(\frac34Cos^2\theta-\frac14Sin^2\theta)$$

$$=Sin\theta\;(\frac{3\;Cos^2\theta-\;Sin^2\theta}4)\\=\frac{Sin\theta}4(\;3(1-Sin^2\theta)-Sin^2\theta\;)$$

$$=\frac{Sin\theta}4(\;3-3Sin^2\theta-Sin^2\theta\;)\\=\frac{Sin\theta}4(\;3-4Sin^2\theta\;)$$

$$=\frac14\;(\;3\;Sin\theta-4\;Sin\theta\;)\\=\frac14\;Sin\;3\theta\\=R.H.S$$

===============================================================

iii) :- Find the value of P such that $$\widehat i+2\widehat{\;j}+p\widehat k\;,\;3\widehat i+p\widehat j+4\widehat k\\and\;2\widehat i+3\widehat j+4\widehat k$$

are coplaner.

If vector are coplanar, their scalar triple product is zero.

$$\overrightarrow a.\;(\;\widehat b\;\times\;\widehat c\;)=\begin{vmatrix}1&2&\rho\\3&\rho&4\\2&3&4\end{vmatrix}$$

$$=1\begin{vmatrix}\rho&4\\3&4\end{vmatrix}\;-2\begin{vmatrix}3&4\\2&4\end{vmatrix}\;+\rho\begin{vmatrix}3&\rho\\2&3\end{vmatrix}$$

$$=1(4\rho-12)-2(12-8)\;+\rho(9-2\rho)\\$$

$$=4\rho-12-2(4)\;+9\rho-2\rho^2\\=-2\rho^2+13\rho-20\\$$

$$-2\rho^2+13\rho-20=0\\2\rho^2-13\rho+20=0\\$$

$$\rho=\frac{-(-13)\pm\sqrt{{(13)}^2-4(2)(20)}}{2(2)}\\$$

$$\rho=\frac{13\pm\sqrt{169-160}}4\\=\frac{13\pm3}4\\$$

$$\rho=\frac{13+3}4=\frac{16}4=4\\\rho=\frac{13-3}4=\frac{10}4=\frac52\\$$

iii) :- Find the maximum and minimum values of the function

$$f\;(\theta)=\frac1{3+5\;Cos\;(2\theta+\pi)}\\=\frac1{3-5\;Cos\;2\theta}\\$$

$$f\;(\theta)=\frac1{3-5\;Cos\;2\theta}\\Cos\;2\theta\in\;\begin{bmatrix}-1,&1\end{bmatrix}\\$$

$$If\;Cos\;2\theta=\;-1\\$$

$$f(\theta)=\frac1{3-5(-1)}=\frac18\\=0.125\\$$

$$If\;Cos\;2\theta=1\\$$

$$f(\theta)=\frac1{3-5\;(1)}=\frac{-1}2\\=0.5\\$$

$$The\;denominator\;3-5\;Cos\;2\theta=0\\when\;Cos\;2\theta\;=\frac35and\;\frac35is\\between\;-1\;and\;1,\;such\;angle\;exist.\\$$

Therefore No finite maximum value and no finite minimum value will exist

===============================================================

iv) :- If $$p\;(x)=x^4-6x^3+11x^2-6x\\$$

then,

a) :- Divide p (x) by (x-1)using synthetic division.

b) :- Solve the resulting depressed equation.

$$Q\;(x)=x^3-5x^2+6x\\x^3-5x^2+6x=0\\x\;(x^2-5x+6)=0\\\\$$

$$x\;(x^2-3x-2x+6)=0\\x(x\;(x-3)-2(x-3)\;)=0\\x\;(x-3)\;(x-2)\;=0\\\\$$

$$x=0,\;\\x-3=0\\\;x=3\\x-2=0\\x=2\\$$

$$Roots\;x\;=0\;,\;2,\;3,\;1\\$$

iv) :- A harmonic sequence has 2nd term 1/6 and 4th term 1/12. Find General term of the sequence.

In H.P the reciprocal of the terms form an A.P

2nd term = 1/6

4th term = 1/12

So, their reciprocal are 

1/1/6 = 6 , 1/1/12 = 12

Hence in A.P

$$a_2=6\;,\;a_4=12\\a+d=6\;,\;a+3d=12\;eq…(ii)\\a=6-d\;eq…(i)\;,\;\\$$

Putting a = 6 – d in eq…(ii)

6 – d + 3d = 12

2d = 6

d = 3

Putting d = 3 in eq…(i)

a = 6 – 3

a = 3

$$an=a+(n-1)\;d\\=3+(n-1)\;3\\=3+3n-3=3n\\General\;term\;of\;H.P=\frac1{3n}\;\\$$

===============================================================

v) :- Without drawing graph, find range, amplitude period and frequency of the function.

$$y=\;-4\;Cos(\;7x-\mathrm\pi\;)$$

$$Amplitude=\left|-4\right|=4\\Cos\theta\;\in\left[-1,\;1\right]\\Range=\left[-4,\;4\right]$$

$$-4\;Cos(7x-\mathrm\pi+2\mathrm\pi)\\-4\;\mathrm{Cos}(\;7\mathrm x+\mathrm\pi\;)\\$$

$$\mathrm y=\;\mathrm a\;\mathrm{Cos}(\mathrm{bx}+\mathrm c)\\\mathrm{Period}=\frac{2\mathrm\pi}{\left|\mathrm b\right|}\\$$

$$\mathrm{Hence}\;\mathrm{period}\;\mathrm{of},\;\\-4\;\mathrm{Cos}\;(\;7\mathrm x+\mathrm\pi\;)\\$$

$$\mathrm{Frequency}=\frac7{2\mathrm\pi}\\$$

$$\mathrm{Amplitude}=\left|\mathrm a\right|\\=\left|-4\right|\\=4\\$$

v) :- Find the term containing $$\mathrm x^3\\$$ in the expansion of $${(\mathrm x+2)}^6\\$$

$${\mathrm T}_{\mathrm r+1}={}^{\mathrm n}\mathrm C_{\mathrm r}\;,\;\mathrm a^{\mathrm n-\mathrm r}\;,\;\mathrm b^{\mathrm r}\\$$

$$\mathrm a\;=\;\mathrm x\;,\;\mathrm b\;=\;2\;,\;\mathrm n\;=\;6\\\mathrm n-\mathrm r\;=\;3\;,\;6-\mathrm r\;=\;3\\6-3\;=\;\mathrm r\;,\;\mathrm r\;=\;3\\$$

$${\mathrm T}_{\mathrm r+1}={}^6\mathrm C_3\;\mathrm a^3\;\mathrm b^3\\$$

$${\mathrm T}_4=\frac{6!}{3!\;(\;6-3\;)!}\mathrm x^3.2^3\\=\frac{6!}{3!\;3!}\mathrm x^3.8\\$$

$$=\frac{6\times5\times4\times3!}{3!\times3\times2}\mathrm x^3.8\\=160\;\mathrm x^3$$

===============================================================

vi) :- In an arithmetic sequence, the 5th term is 15 and the 12th term is 50.

a) :- Find common difference

b) :- First term of the sequence

$$a_{5\;}=15\;,\;a_{12}=50\\a+4d=15\;,\;a+11d\;=50\\a=15-4d\;eq…\;(i)\;,\;a=50-11d\;eq…\;(ii)$$

Comparing eq… (i) and  eq… (ii)

!5 – 4d = 50 – 11d

-4d + 11d = 50 – 15

7d = 35

d = 5

Putting d = 5 in eq… (i)

a = 15 – 4 (5)

= 15 – 20

a = -5

vi) :- Verify that

$$\frac{1+Sin\;2\theta+\;Cos\;2\theta}{1+\;Sin\;2\theta-\;Cos\;2\theta}=\;Cot\theta$$

$$L.H.S=\frac{1+Sin\;2\theta+\;Cos\;2\theta}{1+\;Sin\;2\theta-\;Cos\;2\theta}$$

$$=\frac{1+2\;Sin\theta\;Cos\theta+\;Cos^2\theta-Sin^2\theta}{1+\;2\;Sin\theta\;Cos\theta-(Cos^2\theta-Sin^2\theta)}$$

$$=\frac{Cos^2\theta+Sin^2\theta+2\;Sin\theta\;Cos\theta+\;Cos^2\theta-Sin^2\theta}{Cos^2\theta+Sin^2\theta+\;2\;Sin\theta\;Cos\theta-(Cos^2\theta-Sin^2\theta)}$$

$$=\frac{{(Cos\theta+Sin\theta)}^2+\;(Cos\theta+Sin\theta)\;(Cos\theta-Sin\theta)}{{(Cos\theta+Sin\theta)}^2-(Cos\theta+Sin\theta)\;(Cos\theta-Sin\theta)}$$

$$=\frac{(Cos\theta+Sin\theta)(Cos\theta+Sin\theta+Cos\theta-Sin\theta)}{(Cos\theta+Sin\theta)(Cos\theta+Sin\theta-Cos\theta+Sin\theta)}$$

$$=\frac{2\;Cos\theta}{2\;Sin\theta}\\=\;Cot\theta\\=R.H.S$$

===============================================================

vii) :- Verify that

$$\begin{vmatrix}1&a&a^2\\1&b&b^2\\1&c&c^2\end{vmatrix}$$ =( b-a ) ( c-a ) ( c-b )

$$L.H.S=\begin{vmatrix}1&a&a^2\\1&b&b^2\\1&c&c^2\end{vmatrix}$$

$$=\begin{vmatrix}1&a&a^2\\0&b-a&b^2-a^22\\0&c-a&c^2-a^2\end{vmatrix}\;\\R_2-R_1\\R_3-R_1\\$$

$$Expanding\;through\;C_1\\=-1\;\begin{vmatrix}b-a&(b-a&(b+a)\\c-a&(c-a)&(c+a)\end{vmatrix}\\$$

$$=(b-a)\;\begin{vmatrix}1&b+a\\c-a&(c-a)(c+a)\end{vmatrix}\\\\$$

$$=(b-a)(c-a)\;\begin{vmatrix}1&b+a\\1&(c+a)\end{vmatrix}\\=(b-a)(c-a)(c+a-b-a)\\\\$$

$$=(b-a)(c-a)(c-b)\\=R.H.S\\\\$$

vii) :- If $$\tan\;\theta=\frac34with\;\mathrm\pi<\mathrm\theta<\frac{3\mathrm\pi}2\\$$. Find the exact value of,

a) :- $$Sin\;(\frac\theta2)\;and\;\\$$

b) :- $$Cos\mathit\;\mathit(\frac{\mathit\theta}{\mathit2}\mathit)\mathit\;without\mathit\;using\mathit\;calculater\\$$

Solution:-

$$2Cos^2\theta=1+Cos2\theta\\Cos^2\theta=\frac{1+Cos2\theta}2\\\sqrt{Cos^2\theta}=\;\pm\sqrt{\frac{1+Cos2\theta}2}\\Cos\theta\;=\;\pm\sqrt{\frac{1+Cos2\theta}2}\\\\$$

From this we conclude that

$$Cos\;(\frac\theta2)\;=\;\pm\sqrt{\frac{1+Cos\theta}2}\\\\$$

$$2Sin^2\theta=1-Cos2\theta\\Sin^2\theta=\frac{1-Cos2\theta}2\\\sqrt{Sin^2\theta}=\;\pm\sqrt{\frac{1-Cos2\theta}2}\\Sin\theta\;=\;\pm\sqrt{\frac{1-Cos2\theta}2}\\\\$$

From this we conclude that

$$Sin\;(\frac\theta2)\;=\;\pm\sqrt{\frac{1-Cos\theta}2}\\\\$$

Lets use Pythagorean identity

$$1+\tan^2\theta\;=\;Sec^2\theta\\1+{(\frac34)}^2\;=\;Sec^2\theta\\1+\frac9{16}=\;Sec^2\theta\\\frac{16+9}{16}=\;Sec^2\theta\\\frac{25}{16}=\;Sec^2\theta\\\sqrt{Sec^2\theta\;}=\pm\sqrt{\frac{25}{16}}\\Sec\;\theta\;=\;\pm\frac54\\But\;\theta\;lies\;in\;3rd\;Quadrant\\Hence\;\\Sec\;\theta\;=-\frac54\\So\\Cos\;\theta\;=\;-\frac45\\\\\\$$

We know that

$$Sin\;(\frac\theta2)\;=\;\pm\sqrt{\frac{1-Cos\theta}2}\\\\$$

But

$$\;\mathrm\pi<\mathrm\theta<\frac{3\mathrm\pi}2\\dividing\;by\;2\\\;\frac{\mathrm\pi}2<\frac{\mathrm\theta}2<\frac{3\mathrm\pi}4\\Its\;mean\;\frac{\mathrm\theta}2\;lies\;in\;2nd\;quadrant\\\\$$

$$In\;2nd\;Qudrant\;Sine\;is\;positive\;so\\\\Sin\;(\frac\theta2)\;=\;+\sqrt{\frac{1-Cos\theta}2}\\\\Sin\;(\frac\theta2)=+\sqrt{\frac{1-({\displaystyle\frac{-4}5})}2}\\=\;\sqrt{\frac{\displaystyle\frac{5+4}5}2}\\=\;\sqrt{\frac9{10}}\\=\frac3{\sqrt{10}}\\$$

We know that

$$Cos\;(\frac\theta2)\;=\;\pm\sqrt{\frac{1+Cos\theta}2}\\\\$$

$$In\;2nd\;Qudrant\;Co\sin e\;is\;negative\;so\\\\Cos\;(\frac\theta2)\;=\;-\sqrt{\frac{1+Cos\theta}2}\\\\Cos\;(\frac\theta2)=-\sqrt{\frac{1+({\displaystyle\frac{-4}5})}2}\\=-\;\sqrt{\frac{\displaystyle\frac{5-4}5}2}\\=-\;\sqrt{\frac1{10}}\\=-\frac1{\sqrt{10}}\\$$

===============================================================

viii) :- A bouncing ball rebounds 80% of its previous height. If the ball dropped from a height of 50 m. Find the total distance travelled by the ball before coming to rest.

$$First\;term\;a_0=50\;m\\ar,\;(ar)r,\;(ar^2),\;(ar^3)r,\;…$$

$$ar,\;(ar)r,\;(ar^2),\;(ar^3)r,\;…\\2\;ar,\;2\;ar^2,\;2ar^3,\;2ar^4,\;…$$

$$Hence\;a_1=2\;ar\\Common\;ratio=r\\=\frac{2\;ar^2}{2ar}=r$$

$$S=\frac{a_1}{1-r}\\=\frac{2\;ar}{1-r}\\=\frac{2\;(50)\;80\%}{1-80\%}$$

$$=\frac{100\;(0.8)\;}{1-0.8}=400\\Total\mathit\;distance\;=50+400\\=\;450\;m\;$$

viii):- How many words can be formed by using the letters from the word “EDUCATION” such that all the vowels are never together.

Total letter = 9

To arrange 9 distinct 

Letters = 9!

Vowels = E, U, A, I, O = 5 letters

Consonants = D, C, T, N = 4 letters

Vowels can be arranged in 5! way and consonant can be arranged in 4! ways. 

If 5 vowels are together treat them like one block.

$$\underline E\;\underline D\;\underline U\;\underline C\;\underline A\;\underline T\;\underline I\;\underline O\;\underline N\\\underline{vowels}\;\underline D\;\underline C\;\underline T\;\underline N\\1!\;also\;4!$$

These five items can be arranged in 5! ways. Vowels can be arranged in 5! way. Number of arrangements with vowels all together

$$=\;5!\;\times\;5!$$

$$Requirement\;=\;9!-(5!\;\times\;5!)\\=\;348480$$

===============================================================

ix) :- Use Method of  Mathematical induction to prove that

$$1^3+2^3+3^3….n^3={(\frac{n(n+1)}2)}^2\\for\;all\;n\in\mathbb{N},\;n\geq1\\$$

$$Base\;case\;(n=1)\\{(1)}^3={(\frac{1(1+1)}2)}^2\;1={(\frac{1(2)}2)}^2$$

$$1=\;{(1)}^2\\1\;=\;1$$

Statement is true for n=1

Inductive step let the statement is true for n=k

$$1^3+2^3+3^3+…+k^3\\=\;{(\frac{k\;(k+1)}2)}^2$$

We’ll have to show that statement is true for n = k+1

$$1^3+2^3+3^3+…+k^3+{(k+1)}^3\\=\;{(\frac{(k+1)\;(k+2)}2)}^2$$

$$L.H.S=1^3+2^3+3^3+…+k^3+{(k+1)}^3\\=\;{(\frac{k\;(k+1)}2)}^2+{(k+1)}^3$$

$${(k+1)}^{2\;}(\frac{k^2}4+k+1)\\={(k+1)}^2(\frac{k^2+4k+4}4)$$

$$={(k+1)}^{2\;}\frac{{(k+2)}^2}{{(2)}^2}\\={(\frac{(k+1)(k+2)}2)}^2$$

$$R.H.S=>Identity\;holds\;for\;n\geq1\;$$

ix):- Find the rank of the matrix

$$\begin{bmatrix}1&1&0&-2\\2&0&2&2\\4&1&3&1\end{bmatrix}\\$$

$$\begin{bmatrix}1&1&0&-2\\0&-2&2&6\\0&-3&3&9\end{bmatrix}\\R_2-2R_1\\R_3-4R_1$$

$$\begin{bmatrix}1&1&0&-2\\0&1&-1&-3\\0&-3&3&9\end{bmatrix}\\-\frac12R_2$$

$$\begin{bmatrix}1&1&0&-2\\0&-1&-1&-3\\0&0&0&0\end{bmatrix}\\+R_3+3R_2$$

Number of nonzero rows in echelon form is called rank.

Hence Rank = 2

===============================================================

x):- If

$$Z_1=\;10\;(Cos100+i\;Sin100)\\Z_2=\;5\;(Cos40\;+\;i\;Sin40\;$$

Then find the following in polar form

$$\;a):\;\;Z_1Z_2\;\;and\;\;b):\;\;\frac{Z_1}{Z_2}$$

$$Z_1Z_2=\left\{10\;(Cos\;100+i\;Sin\;100)\;\right\}\\\left\{5\;(Cos\;40+i\;Sin\;40)\;\right\}$$

$$=50\left\{(Cos(100+40)+iSin(100+40)\right\}\\=50\;(\;Cos\;140+i\;Sin\;140\;)\\=50\;Cis\;140$$

$$\frac{Z_1}{Z_2}=\frac{10\;(Cos\;100+i\;Sin\;100)}{5\;(Cos\;40+i\;Sin\;40)}\\=2\;(Cos\;(100-40)\\+i\;Sin\;(100-40)\;)$$

$$=\;2(\;Cos\;60-i\;Sin\;60)\\=2\;Cis\;60$$

x):-A solar panel’s Sunlight reception is modelled as

$$\;P(\theta)\;=\;100\;Cos(3\theta-90)\\with\;0\leq\theta\leq180$$

a):- Find angle for maximum sun light and the maximum sunlight received

b):- Find angle for minimum sun light and the minimum sun light received

$$p\;(\theta)=100\;Cos(30-90^\circ)\\Range\;of\;\cos ine\;is\;\left[-1,\;1\right]\\Cos\;(30-90^\circ)=1\\30-90^\circ=Cos^{-1}(1)$$

$$30-90^\circ=0^\circ\\30\;=\;90^\circ\\\theta\;=\;30^\circ\\p\;(\theta)=100(1)=100$$

$$Maximum\;angle\;=30^\circ\\Maximum\;sunlight=100\\p\;(\theta)=100\;Cos(30-90^\circ)$$

$$Cos(30-90)=-1\\30-90=Cos^{-1}(-1)\\30-90=180\\30=270\\\theta\;=\;90^\circ$$

$$p\;(\theta)=100\;(-1)\\=\;-100\\Minimum\;angle\;=90^\circ\\Minimum\;sunlight=-100$$

===============================================================

xi):- Use binomial theorem to approximate the value of

$$\sqrt{101}\;\times\;\sqrt{99}$$

$$=\sqrt{101\times99}\\=\sqrt{9999}=\sqrt{10000-1}\\=\sqrt{10000(1-\frac1{10000})}$$

$$=\sqrt{10000}\sqrt{(1-\frac1{10000})}\\=100\;{(1-0.0001)}^\frac12\\(1-0.0001)\frac12=(1+{(-0.0001)\;)}^\frac12$$

$$=1+\frac12(-0.0001)+\frac{{\displaystyle\frac12}({\displaystyle\frac12}-1)}{2!}\\{(-0.0001)}^2+\frac{{\displaystyle\frac12}({\displaystyle\frac12}-1)({\displaystyle\frac12}-2)}{3!}\\{(-0.0001)}^3$$

$$=1-0.00005+(-0.125)(0.00000001)\\+(0.0625)(-0.000000000001)$$

=99.995

xi):- A force F=6i+8j+4k acts on a object. The object moves from A(1,2,3) to the point B(4,6,5). Find displacement vector d and work done by the force F.

$$\overrightarrow d=\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$$

= ( 4, 6, 5 ) – ( 1, 2, 3 )

= ( 3, 4, 2 )

$$=\;3\widehat i+4\widehat j+2\widehat k\\w=\overrightarrow F.\overrightarrow d$$

= ( 6, 8, 4 ) . ( 3, 4, 2 )

=18 + 32 + 8

= 58

===============================================================

xii):- If

$$p(x)\;=\;a\;x^3+\;b\;x^2\;+2x-1$$

leaves remainder 5 when divided by x+1. Find the values of a and b using remainder theorem.

x + 1 = 0 , x = -1

$$p\;(-1)\;=a{(-1)}^3+b{(-1)}^2+2(-1)-1$$

 = – a + b – 2 – 1

= – a + b – 3

– a + b – 3 = 5

– a + b = 5 + 3

b – 8 = a

xii) :- Solve x + y + z ; y + z = 2 ; z = 2 using Cramer’s rule.

$$\begin{bmatrix}1&1&1\\0&1&1\\0&0&1\end{bmatrix}\;\begin{bmatrix}x\\y\\z\end{bmatrix}\;\begin{bmatrix}3\\2\\2\end{bmatrix}\\A\;X=B$$

$$\left|A\right|=\begin{vmatrix}1&1&1\\0&1&1\\0&0&1\end{vmatrix}$$

$$=1\begin{vmatrix}1&1\\0&1\end{vmatrix}=1(1-0)\\=\;1$$

$$\left|A_x\right|=\begin{vmatrix}3&1&1\\2&1&1\\2&0&1\end{vmatrix}\\=3(1-0)-1(2-2)+1(0-2)$$

$$\left|A_x\right|=3(1)-1(-2)\\=3-0-2=1\\\left|A_y\right|=\begin{vmatrix}1&3&1\\0&2&1\\0&2&1\end{vmatrix}$$

$$=\;1(2-2)=1\;(0)=0\\\left|A_z\right|=\begin{vmatrix}1&1&3\\0&1&2\\0&0&2\end{vmatrix}\\=1(2-0)=1\;(2)=2$$

$$x=\frac{\left|A_x\right|}{\left|A\right|}=\frac11=\;1\\y=\frac{\left|A_y\right|}{\left|A\right|}=\frac01=\;0\\z=\frac{\left|A_z\right|}{\left|A\right|}=\frac21=\;2$$

 

up to three decimal places

===============================================================

===============================================================

SCCTION C

Q3 :- If

$$p\;(x)\;=\;2x^3+x^2-13x+6$$ , then

a) :- Verify that (x+3) is a factor of p (x)

b) :- Factorize p (x) using synthetic division.

c) :- Find all the roots of p (x).

d) :- Write complete factorized form of p (x) and confirm by expanding.

x + 3 = 0

x = – 3

Hence x + 3 is a factor of p (x)

$$2x^2-5x+2\\2x^2-4x-x+2\\2x(x-2)\;-1(x-2)\\(x-2)\;(2x-1)$$

$$x-2=0,\;x=2\\2x-1=0,\;x=\frac12\\Roots\mathit\;are\mathit\;\mathit-\mathit3\mathit,\mathit\;\mathit2\mathit,\mathit\;\frac{\mathit1}{\mathit2}$$

$$2x^3+x^2-13x+6\\=(x+3)\;(x-2)\;(2x-1)\\(x+3)\;(x-2)=x^2-2x+3x-6\\=x^2+x-6$$

$$(2x-1)(x^2+x-6)\\=2x^3+2x^2-12x-x^2-x+6\\=2x^3+x^2-13x+6\\=p\;(x)$$

Q3 :- If  $$\widehat a=3\widehat i+2\widehat j+4\widehat k\\and\\\widehat b=\widehat i+2\widehat j+\widehat k\\\\$$ , then

a) :- Find $$\overrightarrow a\times\overrightarrow b$$

b) :- Find  $$(\overrightarrow a\times\overrightarrow b).a\;and\;verify\;that\;\overrightarrow a\times\overrightarrow b\perp\overrightarrow a$$

c) :- Find $$(\overrightarrow a\times\overrightarrow b).b\;and\;verify\;that\;\overrightarrow a\times\overrightarrow b\perp\overrightarrow b$$

$$\overrightarrow a\times\overrightarrow b=\begin{vmatrix}i&j&k\\3&2&4\\1&2&-1\end{vmatrix}$$

$$=\begin{vmatrix}2&4\\2&-1\end{vmatrix}-j\begin{vmatrix}3&4\\1&-1\end{vmatrix}\\+k\begin{vmatrix}3&2\\1&2\end{vmatrix}$$

$$=i(-2-8)-i(-3-4)+k(6-2)\\\overrightarrow a\times\overrightarrow b=-10i+7j+4k$$

$$(\overrightarrow a\times\overrightarrow b).\overrightarrow b=(-10,\;7,\;4).(1,\;2,\;-1)\\=-10+14-4=0$$

$$Hence\;(\overrightarrow a\times\overrightarrow b)\perp\overrightarrow b$$

$$\;(\overrightarrow a\times\overrightarrow b).\overrightarrow a=(-10,\;7,\;4).(3,\;2,\;4)\\=-30+14+16=0\;$$

$$Hence\;\overrightarrow a\times\overrightarrow b\perp\overrightarrow a$$

===============================================================

Q4:- If x is very small such that its square and higher powers can be neglected, then show that

$$\frac{{(16+4x)}^{\displaystyle\frac34}}{(4+x)\;\sqrt{9-6x}}=\frac23+\frac{13x}{72}$$

$$L.H.S=\frac{{(16+4x)}^{\displaystyle\frac34}}{(4+x)(\sqrt{9-6x})}\\=\frac{(4{(4+x)\;)}^{\displaystyle\frac34}}{(4+x)(\sqrt{9-6x})}$$

$$=\frac{{(4)}^{\displaystyle\frac34}\;(4+x)\;^{{\displaystyle\frac34}-1}}{\sqrt{9-6x}}\\$$

$$=\frac{{(2^2)}^{\displaystyle\frac34}{(4+x)}^{\displaystyle\frac{-1}4}}{{(9-6x)}^{\displaystyle\frac12}}$$

$$=\frac{2^{\displaystyle\frac{2\times3}4}{(4+x)}^{\displaystyle\frac{-1}4}}{{(9-6x)}^{\displaystyle\frac12}}$$

$$=\frac{2^{\displaystyle\frac32}(\;{(4)}^{\displaystyle\frac{-1}4}+({\displaystyle\frac{-1}4}){(4)}^{{\displaystyle\frac{-1}4}-1}(x)+{\displaystyle\frac{({\displaystyle\frac{-1}4})({\displaystyle\frac{-1}4}-1)}{21}}{(4)}^{{\displaystyle\frac{-1}4}-2}{(x)}^2+…)}{{(9)}^{\displaystyle\frac12}+{\displaystyle\frac12}{(9)}^{{\displaystyle\frac12}-1}(-6x)+{\displaystyle\frac12}({\displaystyle\frac12}-1){(9)}^{{\displaystyle\frac12}-2}{(6x)}^2+…}$$

$$=\frac{2^{\displaystyle\frac32}(\;{(2^2)}^{\displaystyle\frac{-1}4}+({\displaystyle\frac{-1}4}){(2^2)}^{\displaystyle\frac{-5}4}x+({\displaystyle\frac{-1}4})({\displaystyle\frac{-5}4}){(2^2)}^{\displaystyle\frac{-9}4}x^2+…}{{(3^2)}^{\displaystyle\frac12}+{\displaystyle\frac12}{(3^2)}^{\displaystyle\frac{-1}2}(-6x)+{\displaystyle\frac12}({\displaystyle\frac{-1}2}){(3^2)}^{\displaystyle\frac{-3}4}(36x^2)+…}$$

$$=\frac{2^{\displaystyle\frac32}(2^{2({\displaystyle\frac{-1}4})}+({\displaystyle\frac{-1}{2^2}}.2^{2({\displaystyle\frac{-5}4})}x)}{3+{\displaystyle\frac12}(3^{-1})(-6x)}$$

$$=\frac{2^{\displaystyle\frac32}(2^{\displaystyle\frac{-1}2}-2^{-2}.2^{\displaystyle\frac{-5}2}x)}{3-3^{-1}.3x}$$

$$=\frac{2^{\displaystyle\frac32}(2^{\displaystyle\frac{-1}2}-2^{\displaystyle\frac{-2-5}2}x)}{3-(3)^\circ x}$$

$$=\frac{2^{\displaystyle\frac32\;}.2^{\displaystyle\frac{-1}2}-2^{\displaystyle\frac32}.2x^{\displaystyle\frac{-9}2}}{3-x}$$

$$=\frac{{(2^{\displaystyle\frac32\;}}^{\displaystyle\frac{-1}2}-2x^{\displaystyle\frac32\frac{-9}2})}{3-x}$$

$$=\frac{2^1-2^{-3}x}{3-x}\\=\frac{2-{\displaystyle\frac x8}}{3-x}$$

$$=(2-\frac x8)(\;(3^{-1})+(-1)(3)(-x)\\+1(-1-1)(3^{-1-2}){(-x)}^2+…)\\=(2-\frac x8)(3^{-1}+3^{-2}x+3^{-3}x^2+…)$$

$$=2.3^{-1}+2.3^{-2}x+2.3^{-3}x^2.\frac x8+…\\=\frac23+\frac{2x}{3^2}-\frac x{3^1.8}$$

$$=\frac23+\frac x3\;(\frac23-\frac18)\\=\frac23+\frac x3\;(\frac{16-3}{24})$$

$$=\frac23+\frac{13x}{72}\\=\;R.H.S$$

Q4 Prove the Fundamental law of trigonometry

Lets consider a unit circle with centre o. Let a point A on the circumference on the circle such that OA is making an Acute central angle Alpha with the x-axis and a point B on the circumference on the circle such that OB is making an Acute central angle Beta with the x-axis. Angle AOB is equal to Alpha minus Beta. Consider a point D on x-axis and a point C on the circumference of the circle such that angle COD is equal to Alpha minus Bets.

Lets check the correspondence of triangle AOB and triangle COD

mOA= mOC because both are radii of the same circle

Angle AOB = Angle COD because both are equal to angle Alpha minus Beta

mOB= mOD because both are radii of the same circle

Hence triangle AOB is congruent to triangle COD

So

mAB=mCD because these are congruent sides of congruent triangle

Lets apply distance formula

$$\overline{AB}=\overline{CD}\\\sqrt{{(Cos\alpha-Cos\beta)}^2+{(Sin\alpha-Sin\beta)}^2}\\=\sqrt{{(Cos(\alpha-\beta)-1)}^2+{(Sin(\alpha-\beta)-0)}^2}\\or\\Cos^2\alpha+Cos^2\beta-2Cos\alpha Cos\beta+\\Sin^2\alpha+Sin^2\beta-2Sin\alpha Sin\beta\\=Cos^2(\alpha-\beta)+1-2Cos(\alpha-\beta)\\+Sin^2(\alpha-\beta)\\or\\1+1-2(Cos\alpha Cos\beta+Sin\alpha Sin\beta)\\=1+1-2Cos(\alpha-\beta)\\Hence\\Cos(\alpha-\beta)=Cos\alpha Cos\beta+Sin\alpha Sin\beta$$

===============================================================

Q5:-

$$y=3Cos2x\;;\;\frac{-\mathrm\pi}2\leq x\leq\frac{\mathrm\pi}2$$

(i) make table values for given interval

(ii) Draw the graph of the function for given interval

xy=3Cos2x
-90-3
-450
03
450
90-3

Q5 Solve x+2y-3z=4, 2x-3y+4z=5 and 3x+4y-5z=6 using Gaussian elimination method.

We will start with augumented matrix

$$\begin{bmatrix}1&2&-3&4\\2&-3&4&5\\3&4&-5&6\end{bmatrix}$$

Subtract two times of 1st row from 2nd row and three times of 1st row from 3rd row

$$\begin{bmatrix}1&2&-3&4\\0&-7&10&-3\\0&-2&4&-6\end{bmatrix}$$

Divide 2nd row by -7

$$\begin{bmatrix}1&2&-3&4\\0&1&\frac{-10}7&\frac37\\0&-2&4&-6\end{bmatrix}$$

Subtract two times of 2nd row from 1st row and add two times of 2nd row in 3rd row

$$\begin{bmatrix}1&0&\frac{-1}7&\frac{22}7\\0&1&\frac{-10}7&\frac37\\0&0&\frac87&\frac{-36}7\end{bmatrix}$$

Divide 3rd row by 8/7

$$\begin{bmatrix}1&0&\frac{-1}7&\frac{22}7\\0&1&\frac{-10}7&\frac37\\0&0&1&\frac{-9}2\end{bmatrix}$$

Add 1/7 of 3rd row in 1st row and 10/7 of 3rd row in 2nd row

$$\begin{bmatrix}1&0&0&\frac{85}{28}\\0&1&0&\frac{-57}{14}\\0&0&1&\frac{-9}2\end{bmatrix}$$

So x=85/28, y=-57/14 and z=-9/2

Verification:-

x+2y-3z=4

85/28+2(-57/14)-3(-9/2)=4

4=4

Verified

===============================================================

Q6:- For an arithmetic geometric series

$$1+5(\frac12)+9{(\frac12)}^2+13{(\frac12)}^3+…..$$

a):- Find general term of the series

b):- Sum the series up to n-term

c):- Sum the series up to infinite terms

Solution:-

1,5,9,13,….

a=1, d=5-1=4

$$a_n=a-(n-1)\;d\\=1+(n-1)\;3\\=4n-3$$

$${(\frac12)}^0+{(\frac12)}^1+{(\frac12)}^2+{(\frac12)}^3+……\\a={(\frac12)}^0,\;r=\;\frac{{(\frac12)}^1}{{(\frac12)}^0}={\frac12\;}\\G_n=ar^{n-1}\\=(1)\;{(\frac12)}^{n-1}\\={(\frac12)}^{n-1}$$

Hence

$$General\;term={(4n-3)(\frac12)}^{n-1}$$

Formula for part b and c

$$Sum\;of\;n\;term\\=\frac a{1-r}+dr(\frac1{{(1-r)}^2})(1-r^n)-\frac{(a+nd)\;r^n}{1-r}\\Sum\;of\;infinite\;term\\=\frac a{1-r}+dr\;(\frac1{{(1-r)}^2})$$

Lets first calculate the sum of infinite terms

$$Sum\;of\;infinite\;term\\=\frac a{1-r}+dr\;(\frac1{{(1-r)}^2})\\=\frac1{1-{\displaystyle\frac12}}+(4)(\frac12)(\frac1{{(1-{\displaystyle\frac12})}^2})\\=2+2\times4\;=\;10$$

Lets check the sum of n terms

$$Sum\;of\;n\;term\\=\frac a{1-r}+dr(\frac1{{(1-r)}^2})(1-r^n)-\frac{(a+nd)\;r^n}{1-r}\\=2+8(1-{(\frac12)}^n)-\frac{(1+4n)\;{({\displaystyle\frac12})}^n}{1-{\displaystyle\frac12}}\\=10-\frac{10+8n}{2^n}\\=10-\frac{5+4n}{2^{n-1}}$$

===============================================================

Video is given below and Complete paper in pdf is available on demand


11th Class Math Solved Paper 2025 Federal Board

Home Page Notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *