12th Class Math New Book Federal Board Exercise 2.4
12th Class Math New Book Federal Board Exercise 2.4

12th Class Math New Book Federal Board Exercise 2.4

12th Class Math New Book Federal Board Exercise 2.4

12th Class Math New Book Federal Board Exercise 2.4. Class 12 Math New Book Federal Board Chapter 2 Notes

Q1 :- Find derivative of the functions.

a) :- $$y\;=\;x^9$$

Rule:-

$$\style{font-size:20px}{\frac d{dx}x^n\;=\;n\;x^{(n-1)}}$$

Differentiating both  Sides   w.r.t   x  

$$\frac d{dx}\;y=\frac d{dx}\;x^9\\\frac{dy}{dx}\;=\;9x^{9-1}$$

$$\frac{dy}{dx}\;=\;9x^8$$

=============================================================

b) :- $$\;f\;(x)=4x^\frac13$$

Differentiating both sides  w.r.t  x

$$\;\;\frac d{dx}f\;(x)=\;\frac d{dx}4x^\frac13\\f’\;(x)\;=4\frac d{dx}\;x^\frac13$$

$$4(\;\frac13\;x^{\frac13-1}\;)\\\frac43\;=\;x^\frac{-2}3$$

=============================================================

c) :-

f (x) = 9

Differentiating both  w.r.t  x

$$\;\;\frac d{dx}f\;(x)=\;\frac d{dx}\;9\\f’\;(x)\;=\;0$$

=============================================================

d) :- $$f\;(x)\;=6x^{3\;}+\;3x^2-10$$

Rule:-

$$\frac d{dx}(f+g)\;=\frac d{dx}f\;+\;\frac d{dx}g$$

Differentiating both sides   w.r.t  x

$$\;\frac d{dx}f\;(x)\;=\frac d{dx}(6x^{3\;}+\;3x^2-10)$$

$$f’\;(x)\;=\frac d{dx}6x^{3\;}+\frac d{dx}\;3x^2-\frac d{dx}10)\\=\;6\frac d{dx}x^3+3\frac d{dx}x^2-0$$

$$=\;6\;(\;3x^{3-1})+\;3(2x^{2-1})\\=\;18\;x^2\;+\;6x$$


 

Q2 :- $$Determine\;f’\;(x)\;$$

a) :- $$\;f(x)\;=\;\sqrt5$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f(x)\;=\frac d{dx}\;\sqrt5\\f’\;(x)\;=\;0$$

=============================================================

b):- $$f(x)\;=\sqrt5\;x$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f(x)\;=\sqrt5\frac d{dx}x\\f’\;(x)\;=\sqrt{5\;}\frac d{dx}x$$

$$=\sqrt{5\;}\;(\;1x^{1-1})\;\\=\;\sqrt{5\;}(\;1(1)\;)\\=\;\sqrt5$$

=============================================================

c) :- $$f\;(x)\;=5\;\sqrt x$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\frac d{dx}(5\;\sqrt x)\\f’f(x)\;=\;5\frac d{dx}\sqrt x$$

$$=\;5(\frac d{dx}x^\frac12\;)\\=\;5(\frac12x^{\frac12-1}\;)$$

$$=\;5(\frac12x^\frac{-1}2\;)\\=\;5(\frac1{2x^{1/2}})$$

$$=\;5(\frac1{2\sqrt x})$$

=============================================================

d) :- $$f\;(x)\;=\;\sqrt{5x}\\f\;(x)\;=\;\sqrt5\sqrt x$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\;\frac d{dx}(\sqrt5\sqrt x)\\f’\;(x)\;=\;\sqrt5\;\frac d{dx}\;\sqrt x$$

$$=\;\sqrt5\;(\frac d{dx}\;x^{\frac12\;})\\=\;\sqrt5\;(\frac12\;x^{\frac12-1\;})$$

$$f'(x)=\;\sqrt5\;(\frac12\;x^{\frac{-1}2\;})\\=5\;(\frac1{2x^{1/2}})$$

$$=5\;(\frac1{2\sqrt x})\\=\;\frac{\sqrt5}{2\sqrt x}$$


 

Q3 :- $$Determine\;f’\;(x)\:$$

a) :- $$\;f\;(x)\:=x^2\;(\;x^3+5\;)$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}\;f\;(x)\:=\frac d{dx}x^2\;(\;x^3+5\;)\\f’\;(x)=\frac d{dx}(x^5+5x^2)$$

$$=\frac d{dx}x^5\;\frac d{dx}5x^2\\=5x^{5-1}+5\frac d{dx}x^2$$

$$=\;5x^4+5(2x^{2-1})\\=\;5x^4+\;10x$$

Second method

a) :-

$$\;f\;(x)\:=x^2\;(\;x^3+5\;)$$

Product Rule:-

$$\frac d{dx}\;uv=u\;\frac d{dx}v\;+\;v\;\frac d{dx}u$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}\;f\;(x)\:=\frac d{dx}\{\;x^2\;(\;x^3+5\;)\;\}$$

$$f’\;(x)\;=\;x^2\frac d{dx}\;(x^3+5)+\;(x^3+5)\;\frac d{dx}x^2$$

$$=\;x^2(\frac d{dx}x^3\;+\frac d{dx}5)+\;(x^3+5)\;2x^{2-1}$$

$$=\;x^2(3x^{3-1}\;+0)+\;(x^3+5)\;2x\\=\;x^2(3x^2)+(x^3+5)2x$$

$$=\;3x^4+\;2x^4+\;10x\\=\;5x^4+\;10x$$

=============================================================

b) :-

f (x) = ( x+9 )  ( x-9 )

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\frac d{dx}(x+9(\;(x-9)\\f’\;(x)\;=\frac d{dx}(x^2-81)$$

$$=\frac d{dx}x^2-\frac d{dx}81\\=\;2x-0\\=\;2x$$

 

b) :-

2nd Method:-

f (x) = ( x+9 )  ( x-9 )

Product rule:

$$\frac d{dx}(uv)\\=\;u\frac d{dx}v+v\frac d{dx}u$$

Differentiating both sides   w.r.t   x

$$f’\;(x)\;=(x+9)\frac d{dx}(x-9)\\+\;(x-9)\frac d{dx}(x+9)$$

$$=(x+9)(\frac d{dx}x-\frac d{dx}9)\\+\;(x-9)(\frac d{dx}x+\frac d{dx}9)$$

$$=\;(x+9)(1-0)\;+\;(x-9)(1+0)\\=\;(x+9)(1)\;+(x-9)(1)\;$$

$$=x+9\;+\;x-9\\=\;2x$$

=============================================================

c) :- $$f\;(x)\;={(x^2+x^3)}^3$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\frac d{dx}{(x^2+x^3)}^3\\$$

$$f’\;(x)\;=\frac d{dx}(\;{(x^2)}^3+{(x^3)}^3\;+3{(x^2)}^2(x^3)\;+3(x^2){(x^3)}^2\;)$$

$$=\frac d{dx}(\;x^6+x^9+3x^7+3x^8)$$

$$=\frac d{dx}\;x^6+\frac d{dx}x^9+\frac d{dx}3x^7+\frac d{dx}3x^8\\=\;6x^{6-1}+9x^{9-1}+3\frac d{dx}x^7+3\frac d{dx}x^8\\$$

$$=6x^5+9x^8+21x^6+24x^7\\\\$$

c) :- $$f\;(x)\;={(x^2+x^3)}^3$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\frac d{dx}{(x^2+x^3)}^3\\$$

$$f’\;(x)\;=3{(x^2+x^3)}^{3-1}\frac d{dx}(x^2+x^3)\\=\;3{(x^2+x^3)}^2(\frac d{dx}x^2+\frac d{dx}x^3)\\$$

$$=\;3{(x^2+x^3)}^2(2x^{2-1}+3x^{3-1})\\=\;3{(x^2+x^3)}^2(2x+3x^2)\\$$

=============================================================

d) :- $$f\;(x)=-3x^{-8}+2\sqrt x\\$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)=\frac d{dx}(-3x^{-8}+2\sqrt x)\\f’\;(x)\;=\frac d{dx}(-3x^{-8})+\frac d{dx}(2\sqrt x)$$

$$=\;-3\frac d{dx}x^{-8}+2\frac d{dx}\sqrt x\\=\;-3(-8x^{-8-1})+2\frac1{2\sqrt x}\\$$

$$=\;24x^{-9}+\frac1{\sqrt x}\\$$

=============================================================

e) :- $$f\;(x)\;=\;ax^3+bx^3+cx+d$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\frac d{dx}(\;ax^3+bx^3+cx+d\;)\\$$

$$f’\;(x)\;=\frac d{dx}\;ax^3+\frac d{dx}bx^3+\frac d{dx}cx+\frac d{dx}d\;)\\=\;a\frac d{dx}x^3+b\frac d{dx}x^2+c\frac d{dx}x+0$$

$$=\;a(3x^{3-1})+(2x^{2-1})\;+c\;(1)\\=\;3ax^2+2bx\;+c$$

=============================================================

f) :- $$f\;(x)\;=x^{24}+2x^\frac12+3x^8+9x^4\\$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}f\;(x)\;=\frac d{dx}(x^{24}+2x^\frac12+3x^8+9x^4)\\$$

$$f’\;(x)\;=\frac d{dx}x^{24}+\frac d{dx}2x^\frac12+\frac d{dx}3x^8+\frac d{dx}9x^4\\=24x^{24-1}+2\frac d{dx}x^\frac12+3\frac d{dx}x^8+9\frac d{dx}x^4$$

$$=\;24x^{23}+2\frac1{2\sqrt x}+3(8x^{8-1})+9(4x^{4-1})\\=\;24x^{23}+\frac1{\sqrt x}+24x^7+36x^3$$


 

Q4 :- $$Find\;\frac{dy}{dx}$$

a) :- $$y\;=\frac{x+2x^{\displaystyle\frac32}}{\sqrt x}\\y\;=\frac x{\sqrt x}+\frac{2x^{\displaystyle\frac32}}{\sqrt x}$$

$$y\;=\sqrt x+2x$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y\;=\frac d{dx}\sqrt x+2x\\\frac{dy}{dx}=\frac d{dx}\sqrt x+\frac d{dx}2x$$

$$=\;\frac1{2\sqrt x}+2\frac d{dx}x\\=\frac1{2\sqrt x}+2(1)\\=\frac1{2\sqrt x}+2$$

2nd Method:-

$$y=\frac{x+2x^{3/2}}{\sqrt x}$$

Quotient Rule:-

$$\frac d{dx}\frac uv=\frac{v{\displaystyle\frac d{dx}}u-u{\displaystyle\frac d{dx}}v}{v^2}$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}\frac{x+2x^{3/2}}{\sqrt x}$$

$$\frac{dy}{dx}=\frac{\sqrt x{\displaystyle\frac d{dx}}(x+2x^{\displaystyle\frac32})-(x+2x^{\displaystyle\frac32}){\displaystyle\frac d{dx}}\sqrt x}{{(\sqrt x)}^2}$$

$$=\frac{\sqrt x({\displaystyle\frac d{dx}}x+{\displaystyle\frac d{dx}}2x^{\displaystyle\frac32})-(x+2x^{\displaystyle\frac32}){\displaystyle\frac1{2\sqrt x}}}x$$

$$=\frac{\sqrt x(1+2{\displaystyle\frac d{dx}}x^{\displaystyle\frac32})-{\displaystyle\frac{(x+2x^{\displaystyle\frac32})}{2\sqrt x}}}{2\sqrt x}\\=\frac{\sqrt x(1+2.{\displaystyle\frac32}x^{{\displaystyle\frac32}-1})-({\displaystyle\frac x{2\sqrt x}}+{\displaystyle\frac{2x^{3/2}}{2\sqrt x}})}x$$

$$\frac{dy}{dx}=\frac{\sqrt x(1+3\;x^{\displaystyle\frac12})-({\displaystyle\frac12}\sqrt x+x)}x$$

$$=\frac{\sqrt x+3x-{\displaystyle\frac12}\sqrt x-x}x\\=\frac{{\displaystyle\frac12}\sqrt x+2x}x$$

$$=(\frac12\sqrt x+2x)\frac1x\\=(\frac12\sqrt x)\frac1x+2x(\frac1x)$$

$$=\frac1{2\sqrt x}+2$$

=============================================================

b) :- $$y=(x^3-5)(2x+3)\\y=2x^4+3x^3-10x-15$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(2x^4+3x^3-10x-15)$$

$$\frac{dy}{dx}=\frac d{dx}2x^4+\frac d{dx}3x^3-\frac d{dx}10x-\frac d{dx}15$$

$$=\;2(4x^{4-1})+(3(3x^{3-1})-10(1)\;-0\\=\;8x^3+9x^2-10$$

2nd Method:-

$$y=(x^3+5)(2x+3)$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(x^3+5)(2x+3)$$

$$\frac{dy}{dx}=(x^3+5)\frac d{dx}(2x+3)+(2x+3)\frac d{dx}(x^3-5)\\$$

$$\frac{dy}{dx}=(x^3+5)(\frac d{dx}2x+\frac d{dx}3)+(2x+3)(\frac d{dx}x^3-\frac d{dx}5)\\$$

$$=(x^3+5)(2(1)+0)+(2x+3)(3x^2-0)\\=(x^3-5)(2)+(2x+3)(3x^2)\\\\$$

$$=2x^3-10+6x^3+9x^2\\=8x^3+9x^2-10\\$$

=============================================================

c) :- $$y=(4x^2-3)(7x^2+x)\\y=28x^4+4x^3-21x^2-3x\\$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(28x^4+4x^3-21x^2-3x)\\$$

$$\frac{dy}{dx}=\frac d{dx}28x^4+\frac d{dx}4x^3-\frac d{dx}21x^2-\frac d{dx}3x\\$$

$$=28(4x^3)+4(3x^2)-21(2x)-3(1)\\=112x^3+12x^2-42x-3\\$$

2nd Method:-

$$y=(4x^2-3)(7x^2+x)\\$$

$$\frac d{dx}y=\frac d{dx}(4x^2-3)(7x^2+x)\\$$

$$\frac{dy}{dx}=(4x^2-3)\frac d{dx}(7x^2+x)+(7x^2+x)\frac d{dx}(4x^2-3)\\$$

$$=(4x^2-3)(\frac d{dx}7x^2+\frac d{dx}x)+(7x^2+x)(\frac d{dx}4x^2-\frac d{dx}3)\\$$

$$=(4x^2-3)(7(2x)+1)+(7x^2+x)(4(2x)-0)\\=(4x^2-3)(14x+1)+(7x^2+x)(8x)\\$$

$$=56x^3+4x^2-42x-3+56x^3+8x^2\\=112x^3+12x^2-42x-3\\$$

Q5 :- Find slope of the tangent at x=1

a) :-$$f\;(x)\;=x^2+3x\\\frac d{dx}f\;(x)=\frac d{dx}(x^2+3x)\\$$

$$f’\;(x)=\frac d{dx}x^2+\frac d{dx}3x\\=2x+3(1)\\$$

$$f’\;(x)=2x+3\\f’\;(1)=2(1)+3=5\\$$

=============================================================

b) :- $$f\;(x)=x^4-x^2\\\frac d{dx}f\;(x)=\frac d{dx}(x^4-x^2)$$

$$f’\;(x)=\frac d{dx}x^4-\frac d{dx}x^2\\f’\;(x)=4x^3-2x$$

$$f’\;(1)=4{(1)}^3-2(1)\\=\;4-2\;=\;2$$


Check! Some important links below


You Tube 12th Class Math New Book Federal Board Exercise 2.4 Solution

Home Page Notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *