paper math 9th 2025 fbise solution
paper math 9th 2025 fbise solution

9th math paper 2025 | solution | federal board

9th math paper 2025 solution

9th math paper 2025 solution federal board. we will completely solve 9th math paper 2025 federal board

Time allowed: 2:40
Total Marks Section B and C: 60
Section B – (Marks 36)
math 9th paper 2025 solution federal
math 9th paper 2025 solution federal

Q2  Attempt the following parts

(i) Simplify the expression
$${\lbrack{(2\;a^\frac12\;b^3)}^4\;x\;\;{(4\;a^{-2}\;b^{-6})}^\frac{-1}2\rbrack}^\frac13\\\\\\$$
$$\\=\;{\lbrack{(2)}^4\;{\;(a^\frac12)}^4\;{(b^3)}^4\;\times\;\;{(4)}^\frac{-1}2\;{\;(\;a^{-2})}^\frac{-1}2\;{\;(b^{-6})}^\frac{-1}2\rbrack}^\frac13\\\\{=\;\lbrack{(2)}^4\;{\;(a^{\frac12x4})}\;{(b)}^{3×4}\;\times\;\;{(2^2)}^\frac{-1}2\;{\;(\;a)}^{\frac{-1}2x(-2)}\;{\;(b)}^{\frac{-1}2x(-6)}\rbrack}^\frac13\\\\{=\;\lbrack{(2)}^4\;{\;(a)}^2\;{(b)}^{12}\;\times\;\;{(2)}^{2x\frac{-1}2}\;{\;(\;a)}^1\;{\;{(b)}^3}\rbrack}^\frac13\\\\{=\;\lbrack2^4\;\;{a^2\;b^{12}}\;\times\;\;2^{-1}\;a\;\;b^3\rbrack}^\frac13\\\\{=\;(2^{4-1}\;a^{2+1}\;b^{12+3}\;)}^\frac13\\\\{=\;(2^3\;a^3\;b^{15}\;)}^\frac13\\\\{=\;(2^3)}^\frac13\;{(a^3)}^\frac13\;{(b^{15})}^\frac13\;\\\\=\;{(2)}^{3x\frac13}\;{(a)}^{3x\frac13}{(b)}^{15x\frac13}\\\\=\;2^1\;a^1\;b^5\\\\=\;2a\;b^5\\\\\\\\\\\\\\\\$$
Question:
 Verify $$A\cap(B\cap C)\;=\;(A\cap B)\cap C\;for\;the\;given\;sets\;u\sin g\;Venn\;diagram\\A=\{2,3,5,7\}\;\;B=\{1,2,3,5\}\;\;and\;\;C=\{3,4,6\}\\\\\\\\\\\\\\$$
Solution:
Venn diagram
Venn diagram
(ii) On what bearing is a ship sailing if it is heading position is ?
(a) towards East  (b) towards South East  (c) towards West  (d) towards North East
Towards East = 090                                Towards South East = 090 + 045 = 135
Towards West = 270                               Towards North East = 270+045 = 315
bearing 9th math
bearing 9th math
Question:
For the given sets: X = { 1,9}  Y = { 2,4,6 }
(a) Find Cartesian product  xXy
(b) List all the ordered pairs of the relation $$R\;=\;\{\;(x,y)\;:\;x\in X,\;y\in Y,\;x>y\;\}$$
Solution:
(a)   xXy = { (1,2),(1,4),(1,6),(9,2),(9,4),(9,6) }
(b)   R = { (2,2),(2,4),(9,6) }
$$(iii)\;\;A\;radioactive\;subs\tan ce\;decays\;according\;to\;the\;formula\\M\;=\;200\;\times\;10^{-0.05t},\;where\;m\;is\;mass\;in\;grams\;and\;t\;is\;time\;in\;years.\\(a)\;\;Use\;Logarithms\;to\;express\;’t’\;in\;terms\;of\;’M’\\(b)\;\;Find\;time\;’t’\;when\;mass\;’M’\;reduces\;to\;100\;grams.$$
$$M\;=\;200\;\times\;10^{-0.05t}\\\\LogM\;=\;Log(200\;\times\;10^{-0.05t})\\\\LogM\;=\;Log200\;+\;Log10^{-0.05t}\\\\LogM\;-\;Log200\;=\;-0.05t\;Log10\\\\LogM\;-\;Log(100\times2)\;=\;-0.05t\;(1)\\\\LogM\;-\;Log100\;-\;Log2\;=\;-0.05t\\\\\frac{LogM\;-\;Log100\;-\;Log2}{-0.05}=t\\\\\frac{LogM\;-\;Log\;10^2\;-\;Log2}{-0.05}=t\\\\\frac{LogM\;-\;2Log10\;-\;Log2}{-0.05}=t\\\\\frac{LogM\;-\;2(1)\;-\;0.3010}{-0.05}=t\\\\\frac{LogM\;-\;2.3010}{-0.05}=t\\\\\frac{Log100\;-\;2.3010}{-0.05}=t\\\\\frac{2\;-\;2.3010}{-0.05}=t\\\\\frac{-\;0.3010}{-0.05}=t\\\\6.02\;=\;t\\\\t\;\approx\;6\;years\\$$
Question:
Find square root of $$4\;x^4\;+\;12\;x^3\;+29\;x^2\;+30\;x\;+25\\$$
Solution:
how to find square root by division method
how to find square root by division method
(iv) Solve the equation and represent the solution on a real number line $$\frac{3x-5}4\;=\;\frac{2x+1}3\\$$
$$\frac{3x-5}4\;=\;\frac{2x+1}3\\12(\frac{3x-5}4)\;=12(\;\frac{2x+1}3)\\3(3x-5)\;=\;4(2x+1)\\9x-15=8x+4\\9x-8x=4+15\\x=19\\\\\\$$
$$Verification:-\\\frac{3(19)-5}4\;=\;\frac{2(19)+1}3\\\frac{57-5}4\;=\frac{38+1}3\\\frac{52}4=\frac{39}3\\13=13\\Solution\;set\;=\{\;19\;\}\\\\\\$$
Representation on real line
How to represent real numbers on real line
How to represent real numbers on real line
Question:
$$Factorize\;\;(x^2\;-7x\;+4)\;(x^2\;-7x\;+5)\;-\;2$$
Solution:
$$(x^2\;-7x\;+4)\;(x^2\;-7x\;+5)\;-\;2\\\\Let\;\;x^2\;-7x\;=\;y\\\\(y+4)\;(y+5)\;-2\\y^2\;+\;5y\;+4y\;+20-2\\y^2\;+9y\;+18\\y^2\;+6y\;+3y\;+18\\y(y+6)\;+3(y+6)\\(y+6)(y+3)\\\\Put\;y\;=\;x^2\;-7x\\\\(x^2\;-7x\;+6)\;(x^2\;-7x\;+3)\\(x^2\;-6x-x\;+6)\;(x^2\;-7x\;+3)\\(x(x-6)-1(x-6))\;(x^2\;-7x\;+3)\\(x-6)(x-1)(x^2\;-7x\;+3)$$
fb math 9th paper 2025
fb math 9th paper 2025
(v)  Prove that $$\frac{Sin\theta}{1-Cos\theta}=\;Cosec\theta\;+\;Cot\theta$$
$$L.H.S\;=\;\frac{Sin\theta}{1-Cos\theta}\\\\=\;\frac{Sin\theta}{1-Cos\theta}\times\;\frac{1+Cos\theta}{1+Cos\theta}\\\\=\;\frac{Sin\theta\;(1+Cos\theta)}{1-\;Cos^2\theta}\\\\=\frac{Sin\theta\;(1+Cos\theta)}{Sin^2\theta}\\\\=\;\frac{Sin\theta\;+\;Sin\theta\;Cos\theta}{Sin^2\theta}\\\\=\frac{Sin\theta\;}{Sin^2\theta}+\;\frac{\;Sin\theta\;Cos\theta}{Sin^2\theta}\\\\=\;\frac1{Sin\theta}\;+\;\frac{Cos\theta}{Sin\theta\;}\\\\=\;Cosec\theta\;+\;Cot\theta\\\\=\;R.H.S$$
Question:
Find equation of straight line passing through the point (3,2) and the point
of intersection of given lines   x-y-1=0  ,  x+y-3=0
Solution:
After adding both the equation, we get
2x-4 = 0 So, x=2
After putting x=2 in first equation we get y=1 hence the point is (2,1)
$$(x_1,y_1)\;=\;(3,2)\;\;and\;\;(x_2,y_2)\;=\;(3,2)\\\\y-y_1\;=\;\frac{y_2-y_1}{x_2-x_1}(x-x_1)\\\\y-2\;=\;\frac{1-2}{2-3}\;(x-3)\\\\y-2\;=\;\frac{-1}{-1}\;(x-3)\\\\y-2\;=\;x-3\\\\-2+3\;=\;x-y\\\\-1\;=\;x-y\\\\x-y\;=\;-1\;is\;the\;required\;equation\;od\;straight\;line\\$$
(vi) A 10 m long ladder is leaning against a vertical wall. The foot of the ladder is 6 m away from the base of wall.
Find the angle that ladder makes with the ground and the height at which ladder touches the wall.
paper math class 9
paper math class 9
solution 9th math paper 2025 federal
solution 9th math paper 2025 federal
Question:
A bag contains 5 red, 3 blue and 2 green balls. One ball is drawn at random from the bag. Calculate
the probability that   (a) The drawn ball is red  (b) The drawn ball is not blue
Solution:
$$Sample\;space\;=\;10\;\;Event\;=\;5\\Probability\;of\;red\;=\frac5{10}\;=\;\frac12\;=\;0.5\\\\Sample\;space\;=\;10\;\;Event\;=\;7\\Probability\;of\;red\;=\frac7{10}\;=\;0.7\\$$
(vii) A company wants to install a new cell phone tower so that it is equidistant from two existing towers located at  P(2,5) and  Q(8,3). Find the equation of locus where the new tower should be placed.
$$Mid\;point\;of\;PQ\;=\;M\;=\;(\frac{2+8}2,\frac{5+3}2\;)\\\;=\;(\frac{10}2,\frac82)\;\;=\;\;(5,4)\\\\Slope\;of\;PQ\;=\;\frac{5-3}{2-8}\;=\;\frac{\;2}{-6}\;=\;-\frac13\\\\Slope\;of\;line\;perpendicular\;to\;PQ\;=\;\frac1{-\frac13}=3\\\\y-y_1\;=\;m\;(x\;-\;x_1)\\\\y-4\;=\;3\;(x-5)\\\\y-4\;=\;3x-15\\\\y-3x\;=\;-15\;+4\\\\y-3x\;=\;-11\\\\y\;=3x-\;11$$
Question:
Transform the given equation    3x+2y-18 = 0   in
(a)  Slope-intercept form    y = mx + c
(b) Two-intercept form    x/a + y/b = 1
Solution:
(a) $$3x+2y-18=0\\\\3x+2y=18\\\\2y=-3x+18\\\\y\;=\;\frac{-3}2x\;+9\\\\m=\frac{-3}2\;\;and\;\;c\;=\;9$$
(b) $$3x+2y-18=0\\3x+2y=18\\\\\frac{3x+2y}{18}\;=\;\frac{18}{18}\\\\\frac{3x}{18}+\;\frac{2y}{18}\;=\;1\\\\\frac x6\;+\;\frac y9\;=\;1\\\\a=6\;\;and\;b=9$$
(viii) Two similar triangles have area in ratio 25:49. The base and height of smaller triangle are 10 cm and 15 cm, respectively. Find the corresponding base and height of the larger triangle
$$Ratio\;of\;areas\;=\;25:49\;=\;\frac{25}{49}\\\\Ratio\;of\;areas\;of\;two\;similar\;triangles\;is\;equal\;to\\the\;square\;of\;the\;ratio\;of\;their\;corresponding\;sides.\\\\Ratio\;of\;corresponding\;sides=\sqrt{\frac{25}{49}}=\frac57\\Let\;b\;and\;h\;be\;the\;unknown\;base\;and\;unknown\;height\;respectively\\$$
$$So,\\\frac{10}b=\frac57\\\\70\;=\;5b\\\\\frac{70}5=b\\\\b\;=14\\\\Base\;of\;larger\;triangle\;is\;14\;cm\\\\\frac{15}h=\frac57\\\\105\;=\;5h\\\\\frac{105}5=h\\\\h\;=21\\\\Height\;of\;larger\;triangle\;is\;21\;cm\\$$
Question:
The given data shows the distribution of weights (in kg) of 30 bags of rice. Calculate mean weight of rice bags
If C.I is  05 to 09  then frequency is  5, If C.I is  10 to 14  then frequency is  7, If C.I is  15 to 19  then frequency is  10, If C.I is  20 to 24  then frequency is  4, If C.I is  25 to 29  then frequency is  4.
Solution:
Sum of frequency = 5+7+10+4+4 = 30
Mid point of class intervals respectively = 7,12,17,22,27
Product of frequency and mid point respectively = 35,84,170,88,108
Sum of Product of frequency and mid point = 35+84+170+88+108 = 485
Mean = Sum of frequency divided by Sum of Product of frequency and mid point
Hence,  Mean = 485/30 = 16.17 kg
(ix)  Solve the inequality, and plot the solution on real number line
$$3x+5\;\leq\;5-3(x+2)\;\leq\;6x-10\;\;\;\forall\;x\in\mathbb{R}\\$$
$$3x+5\;\leq\;5-3(x+2)\;\leq\;6x-10\\\;\\3x+5\;\leq\;5-3x-6\;\leq\;6x-10\\\;\\3x+5\;\leq\;-3x-1\;\leq\;6x-10\\\;\\adding\;1\\\\3x+5+1\;\leq\;-3x-1+1\;\leq\;6x-10+1\\\\3x+6\;\leq\;-3x\;\leq\;6x-9\;\;\\\\Now\;lets\;break\;it\;into\;two\;parts\\$$
$$3x+6\;\leq\;-3x\\\\3x+3x\;\leq\;-6\\\\6x\;\leq-6\\\\\frac{6x\;}6\;\leq\frac{-6}6\\\\x\;\leq\;-1\\\\\\$$
$$-3x\;\leq\;6x\;-\;9\\\\9\;\leq6x\;+3x\\\\9\leq9x\\\\\frac99\leq\frac{9x}9\\\\1\;\leq x\\\\x\geq1$$
$$Solution\;set\;=\;\{\;1\;\leq\;x\;\leq-1\;\}$$
9th math paper fbise
9th math paper fbise
Question:
A fair six-sided die is rolled 60 times. Calculate the expected frequency of
(a)  Rolling an even number side                (b)  Rolling a prime number side
$$Even\;numbers\;=\;\{2,4,6\}\\\\Probability\;of\;Even\;number\;=\;\frac36=\frac12\\\\\\Expected\;frequency\;=\frac12\;\times\;60\;=\;30\\\\Prime\;numbers\;=\;\{\;2,3,5\}\\\\Probability\;of\;Prime\;number\;=\;\frac36=\frac12\\\\\\Expected\;frequency\;=\frac12\;\times\;60\;=\;30$$
Section C – (Marks 24)
federal math 9th paper 2025
federal math 9th paper 2025

Note:  Attempt the following parts

Q3       Find HCF and LCM in simplified form using factorization method.
$$x^6\;-\;1\;,\;x^4\;+\;x^2\;+1$$
$$x^6\;-1\;=\;{(x^2)}^3\;-\;{(1)}^3\;=(x^2-1)\;(\;{(x^2)}^2\;+(x^2)\;(1)\;+\;{(1)}^2\;)\\=(x^2-1)\;(x^4\;+\;x^2\;+1)\\=(x+1)\;(x-1)\;(x^4\;+\;x^2\;+1)$$
$$Common\;factor\;=(x^4\;+\;x^2\;+1)\\Uncommom\;factor\;=\;(x^2\;-1)\\HCF\;=\;(x^4\;+\;x^2\;+1)\\LCF\;=\;Common\;factors\;\times\;Uncommon\;factors\\LCM\;=\;(x^4\;+\;x^2\;+1)\;\times\;\;(x^2\;-1)\\=\;x^6\;-\;1$$
 Q:       Points  A(0,0), B(2,0) and C( 1, square root 3)  are the vertices of triangle ABC. Find slopes of sides AB, BC and AC also find interior angles A , B and C
Solution:
$$A(0,0),\;B(2,0)\;and\;C(1,\sqrt3)\\\\Slope\;of\;AB\;=\;m_1\;=\frac{y_2\;-\;y_1}{x_2\;-\;x_1}\\\\\frac{0-0}{2-0}\;=\;\frac02\;=\;0\\\\Slope\;of\;BC\;=\;m_2\;=\frac{y_2\;-\;y_1}{x_2\;-\;x_1}\\\\\frac{\sqrt3-0}{1-2}\;=\;\frac{\sqrt3}{-1}\;=\;-\sqrt3\\\\Slope\;of\;AC\;=\;m_3\;=\frac{y_2\;-\;y_1}{x_2\;-\;x_1}\\\\\frac{\sqrt3-0}{1-0}\;=\;\frac{\sqrt3}1\;=\;\sqrt3\\$$
$$Angle\;A\;(\;between\;AB\;and\;AC\;)\\Tan\theta\;=\;\left|\frac{m_1\;-\;m_3}{1+\;m_1\;m_3}\right|\\Tan\theta\;=\;\left|\frac{0\;-\;\sqrt3}{1+\;(0)\;(\sqrt3)}\right|\\Tan\theta\;=\;\left|\frac{-\sqrt3}1\right|\\Tan\theta\;=\;\sqrt3\\So\\\theta\;=\;60^\circ\\$$
$$Angle\;B\;(\;between\;AB\;and\;BC\;)\\\\Tan\theta\;=\;\left|\frac{m_1\;-\;m_2}{1+\;m_1\;m_2}\right|\\\\Tan\theta\;=\;\left|\frac{0\;-(-\;\sqrt3)}{1+\;(0)\;(-\sqrt3)}\right|\\\\Tan\theta\;=\;\left|\frac{\sqrt3}1\right|\\\\Tan\theta\;=\;\sqrt3\\\\So\\\\\theta\;=\;60^\circ\\$$
$$Angle\;C\;(\;between\;AC\;and\;BC\;)\\\\Tan\theta\;=\;\left|\frac{m_3\;-\;m_2}{1+\;m_3\;m_2}\right|\\\\Tan\theta\;=\;\left|\frac{\sqrt3\;-(-\;\sqrt3)}{1+\;(\sqrt3)\;(-\sqrt3)}\right|\\\\Tan\theta\;=\;\left|\frac{2\sqrt3}{1-3}\right|\\\\Tan\theta\;=\;\left|\frac{2\sqrt3}{-2}\right|\\\\Tan\theta\;=\;\left|-\sqrt3\right|\\\\Tan\theta\;=\;\left|\sqrt3\right|\\\\\\Tan\theta\;=\;\sqrt3\\\\So\\\\\theta\;=\;60^\circ\\$$
Its is an equilateral triangle because all the angles are equal.
Q4       U={1,2,3,4,5,6,7,8,9,10}, A={1,2,5,6}, B={3,5,6,9}, C={3,4,6,10} The Venn diagram shows universal set U and sets A, B and C. Find elements of the following sets using Venn diagram.
$$(a)\;\;A^c,\;B^c,\;C^c\;\;\;\;\;\;\;(b)\;A\cup B,\;{(A\cup B)}^c\;\;\\(c)\;B^c\cap C^c\;\;\;\;\;\;\;\;\;\;\;\;\;(d)\;B\cap C,\;{(B\cap C)}^c$$
(a)
$$A^c\;=\;U-A\\A^c\;=\;\{1,2,3,4,5,6,7,8,9,10\}\;-\;\{1,2,5,6\}\\A^c\;=\;\{3,4,7,8,9,10\}\\B^c\;=\;U-B\\B^c\;=\;\{1,2,3,4,5,6,7,8,9,10\}\;-\;\{3,5,6,9\}\\B^c\;=\;\{1,2,4,7,8,10\}\\C^c\;=\;U-C\\C^c\;=\;\{1,2,3,4,5,6,7,8,9,10\}\;-\;\{3,4,6,10\}\\C^c\;=\;\{1,2,5,7,8,9\}\\\\$$
(b)
$$A\cup B\;=\;\{1,2,5,6\}\cup\{3,5,6,9\}\\A\cup B\;=\;\{1,2,3,5,6,9\}\\{(A\cup B)}^c\;=\;U-A\cup B\\{(A\cup B)}^c\;=\;\{1,2,3,4,5,6,7,8,9,10\}\;-\;\;\{1,2,3,5,6,9\}\\{(A\cup B)}^c\;=\;\{4,7,8,10\}\\$$
(c)
$$B^c\;=\;U-B\\B^c\;=\;\{1,2,3,4,5,6,7,8,9,10\}-\{3,5,6,9\}\\B^c\;=\;\{1,2,4,7,8,10\}\\C^c\;=\;U-C\\C^c\;=\;\{1,2,3,4,5,6,7,8,9,10\}-\{3,4,6,10\}\\C^c\;=\;\{1,2,5,7,8,9\}\\$$
$$B^c\cap C^c\;=\;\{1,2,4,7,8,10\}\;\cap\;\{1,2,5,7,8,9\}\\B^c\cap C^c\;=\;\{1,2,7,8\}$$
(d)
$$B\cap C\;=\;\{3,5,6,9\}\;\cap\;\{3,4,6,10\}\\B\cap C\;=\;\{3,6\}\\{(B\cap C)}^c\;=\;U-\;B\cap C\\{(B\cap C)}^c=\;\{1,2,3,4,5,6,7,8,9,10\}\;-\;\{3,6\}\\{(B\cap C)}^c\;=\;\{1,2,4,5,7,8,9,10\}$$
 Q:         For given regular hexagonal roof ABCDEF of sides measure 6 cm, find (a) Angles AGB and AGH (b) Lengths AH and GH  (c) The area of triangle AGB (d) Area of hexagonal roof

(a)

$$Central\;angle\;of\;hexagon\;=\;\frac{360^\circ}6\;=\;60^\circ\\Hence\;\angle AGB\;=\;60^\circ\\GH\;is\;the\;angle\;bisector\;of\;\angle AGB\\So\\\angle AGH\;=\frac{\angle AGB}2=\frac{60^\circ}2=30^\circ\\\\$$

(b)

$$H\;is\;the\;mid\;point\;of\;AB.\;So,\\AH\;=\;GH\;=\;\frac{6\;cm}2=3\;cm\\\\$$

(c)

$$AGB\;is\;an\;equilateral\;triangle.\\\\Area\;of\;equilateral\;triangle\;=\frac{\sqrt3}4\;\times\;square\;of\;side\\\\Area\;of\;triangle\;AGB\;=\;\frac{\sqrt3}4\;\times\;{(6\;cm)}^2\\\\Area\;of\;triangle\;AGB\;=\;\frac{\sqrt3}4\;\times\;36\;cm^2\\\\Area\;of\;triangle\;AGB\;=\;9\sqrt3\;cm^2$$
(d)
$$Area\;of\;regular\;hexagonal\;roof\;=\;\frac{3\sqrt3}2\;\times\;square\;of\;side\\\\Area\;of\;regular\;hexagonal\;roof\;ABCDEF\;=\;\frac{3\sqrt3}2\;\times\;{(6\;cm)}^2\\\\Area\;of\;regular\;hexagonal\;roof\;ABCDEF\;=\;\frac{3\sqrt3}2\;\times\;{36\;cm^2}\\\\Area\;of\;regular\;hexagonal\;roof\;ABCDEF\;=54\sqrt3cm^2$$
Q5    Construct a triangle ABC of sides measure m AB = m BC = m AC =5 cm
(a)    Construct perpendicular bisectors of the triangle.
(b)    Write down the construction steps.
Solution:
Draw a straight line AB = 5cm
how to draw equilateral triangle
how to draw equilateral triangle
Taking B as centre draw an arc of  5cm and then taking A as radius draw an arc of radius 5 m

 

 

Through this we will get point C . Join C with A and B

equilateral triangle

triangle with all equal sides
triangle with all equal sides
Taking B as centre draw two arcs greater then half of the length of AB

 

Taking A as centre draw two arcs of same radius through this we will get two points and  then Join these two point.
Its required perpendicular bisector of side AB

 

How to draw right bisector
How to draw right bisector
In the same manner we will draw perpendicular bisectors of other two sides of triangle ABC
fbise 9th math paper 2025
fbise 9th math paper 2025
right bisector of triangle
right bisector of triangle
perpendicular bisectors of triangle
perpendicular bisectors of triangle
Construction steps of how to draw right bisectors of a triangle
How to draw angle bisector of triangle
How to draw angle bisector of triangle
How to draw angle bisector
How to draw angle bisector
Q  Distribution of marks obtained by 50 students in a Mathematics test. Their class intervals are 1-10, 11-20, 21-31 and 41-50 while their frequencies are respectively  5, 10, 15,12 and 8. Calculate the median marks
Solution:
Total frequency = 5+10+15+12+8 = 50
N/2 = 50/2 = 25
Median class is 21-30( Cumulative frequency just reaches or passes 25 )
So, frequency of median = 15
Lower class boundary = mid point of 21 – 0.5 = 20.5
width of class = h = 10
$$Median\;=\;l\;+(\;\frac{{\displaystyle\frac N2}-F}{f_m}\;)\;\times\;h\\\\Median=\;20.5\;+\;\frac{25-15}{15}\;\times\;10\\\\Median\;=\;27.17$$

 

You tube federal board 9th math paper 2025 solution

9th math Exercise 1.1 federal board

Home page Notepunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *