class 9 physics chapter 6 numerical solution
class 9 physics chapter 6 numerical solution

9th Physics New Book Chapter 6 Numerical

Table of Contents

9th Physics New Book Chapter 6 Numerical

9th Class New Book Physics Numerical with solution chapter 6

$$6.1\;\;A\;spring\;is\;stretched\\20\;mm\;by\;a\;load\;of\;40\;N.\\Calculate\;the\;value\;of\\spring\;constant.\;If\;an\\object\;causes\;an\\extension\;of\;16\;mm,\\what\;will\;be\;its\;weight\;?\\$$

$$\mathrm{Data}:-\\Dis\tan ce\;=\;x\;=\;20\;mm\\=\;\frac{20}{1000}\;m\;=\;0.02\;m\\Force\;=\;F\;=\;40\;N\\Spring\;cons\tan t\;=\;k\;=\;?\\\\Extension\;=\;x_1\;=16\;mm\\=\frac{16}{1000}m=\;0.016\;m\\Weight\;=\;w\;=\;?$$

$$F\mathit\;\mathit=\mathit\;k\mathit\;x\\k\;=\;\frac Fx\\\\k\;=\;\frac{40\;N}{0.02\;m}\\k\;=\;2000\;N\;m^{-1}\\k\;=\;2\;K\;N\;m^{-1}$$ $$w\mathit\;\mathit=\mathit\;F\mathit\;\mathit=\mathit\;k\mathit\;x\\w\;=\;(\;2000\;N\;m^{-1}\;)\;(\;0.016\;m\;)\\w\;=\;32\;N\\$$

==========================================

$$\mathit6\mathit.\mathit2\;\;The\;mass\;of\;5\\litres\;milk\;is\;4.5\;kg.\\Find\;its\;density\;in\\SI\;units.\\\\$$

$$\boldsymbol D\boldsymbol a\boldsymbol t\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\\Mass\;=\;m\;=\;4.5\;kg\\\\Volume\;=\;V\;=\;5\;litre\;=\;\frac5{1000}\;m^3\;=\;0.005\;m^3\;\\\\Density\;=\;\rho\;=\;?\\$$

$$\boldsymbol F\boldsymbol o\boldsymbol r\boldsymbol m\boldsymbol u\boldsymbol l\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\boldsymbol D\boldsymbol e\boldsymbol n\boldsymbol s\boldsymbol i\boldsymbol t\boldsymbol y\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol m\boldsymbol a\boldsymbol s\boldsymbol s}{\boldsymbol v\boldsymbol o\boldsymbol l\boldsymbol u\boldsymbol m\boldsymbol e}\boldsymbol{\mathit\;}\\\\\boldsymbol\rho\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol m}{\boldsymbol V}\\$$

$$\rho\;=\;\frac{4.5\;kg}{0.005\;m^3}\\\\\rho\;=\;900\;kg\;m^{-3}\\\\\rho\;=\;0.9\;\times\;10^3\;kg\;m^{-3}\\$$

==========================================

$$6.3\;\;\;\;\;When\;a\;solid\;of\\mass\;60\;g\;is\;lowered\\into\;a\;measuring\;cylinder,\\the\;level\;of\;water\;rises\\from\;\;40\;c\;m^3\;to\;44\;c\;m^3.\\Calculate\;the\;density\;of\\the\;solid.$$

$$\boldsymbol D\boldsymbol a\boldsymbol t\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\\Mass\;=\;m\;=\;60\;g\;=\;\frac{60}{1000}\;kg\;=\;0.06\;kg\\\\Initial\;level\;of\;water\;=\;V_1\;=\;40\;c\;m^3\;\\\\=\;\frac{40}{1000000}\;m^3\;=0.000040\;m^3\;\\\\Final\;level\;of\;water\;=\;V_2\;=\;44\;c\;m^3\;\\\\=\;\frac{44}{1000000}\;m^3\;=0.000044\;m^3\;\\\\Volume\;=\;V\;=Final\;level\;-\;initial\;level\\\\=\;0.000044\;m^3\;-\;0.000040\;m^3\\\\=0.000004\;m^3\;\\\\Density\;=\;\rho\;=\;?\\$$

$$\boldsymbol F\boldsymbol o\boldsymbol r\boldsymbol m\boldsymbol u\boldsymbol l\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\boldsymbol D\boldsymbol e\boldsymbol n\boldsymbol s\boldsymbol i\boldsymbol t\boldsymbol y\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol m\boldsymbol a\boldsymbol s\boldsymbol s}{\boldsymbol v\boldsymbol o\boldsymbol l\boldsymbol u\boldsymbol m\boldsymbol e}\\\boldsymbol\rho\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol m}{\boldsymbol V}\\\\\rho\;=\;\frac{0.06\;kg}{0.000004\;m^3}\;\\\\\rho\;=\;15000\;kg\;m^{-3}\\\\\rho\;=\;15\;\times\;10^3\;kg\;m^{-3}\\$$

==========================================

$$\mathit6\mathit.\mathit4\;\;\;\;A\;block\;of\;density\mathit\;\\\mathit8\mathit\;\mathit\times\mathit\;\mathit{10}^{\mathit3}\mathit\;kg\mathit\;m^{\mathit-\mathit3}\;has\;a\\volume\mathit\;\mathit\;\mathit{60}\mathit\;c\mathit\;m^{\mathit3}.\;\;Find\\its\;mass.\\$$

$$\boldsymbol D\boldsymbol a\boldsymbol t\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\\Density\;=\;\rho\;=\;8\;\times\;10^3\;kg\;m^{-3}\\\\Volume\;=\;V\;=\;60\;c\;m^3\;=\\\\=\;\frac{60}{1000000}\;m^3\;=\;0.00006\;m^3\\\\Mass\;=\;m\;=\;?\\$$

$$\boldsymbol F\boldsymbol o\boldsymbol r\boldsymbol m\boldsymbol u\boldsymbol l\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\boldsymbol D\boldsymbol e\boldsymbol n\boldsymbol s\boldsymbol i\boldsymbol t\boldsymbol y\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol m\boldsymbol a\boldsymbol s\boldsymbol s}{\boldsymbol v\boldsymbol o\boldsymbol l\boldsymbol u\boldsymbol m\boldsymbol e}\boldsymbol{\mathit\;}\\\boldsymbol\rho\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol m}{\boldsymbol V}\\$$

$$m\mathit\;\mathit=\mathit\;\rho\mathit\;V\\\\m\;=\;(\;8\;\times\;10^3\;kg\;m^{-3}\;)\;\;(\;0.00006\;m^3\;)\\\\m\;=\;0.48\;kg\\$$

==========================================

$$\mathit6\mathit.\mathit5\boldsymbol{\mathit\;}\boldsymbol{\mathit\;}A\;brick\;measures\\5\;cm\;\times\;10\;cm\;\times20\;cm.\\If\;its\;mass\;is\;5\;kg,\\calculate\;the\;\;maximum\\and\;minimum\;pressure\;\\which\;the\;brick\;can\\exert\;on\;a\;horizontal\\surface.$$

$$\boldsymbol D\boldsymbol a\boldsymbol t\boldsymbol a\boldsymbol:\boldsymbol-\\\\Mass\;=\;m\;=\;5\;kg\\\\Masurement\;of\;brick\;=B=\;5cm\;\times10cm\times20cm\\\\5cm\;=\;\frac5{100}\;m\;=\;0.05\;m\\\\10cm\;=\;\frac{10}{100}\;m\;=\;0.10\;m\\\\20cm\;=\;\frac{20}{100}\;m\;=\;0.20\;m\\\\Hence\\\\Measurement\;of\;brick=B=0.05m\times0.1m\times0.2m\\\\Maximum\;pressure\;=\;P_1\;=\;?\\\\Minimum\;Pressure\;=\;P_2\;=\;?\\$$

$$\boldsymbol S\boldsymbol o\boldsymbol l\boldsymbol u\boldsymbol t\boldsymbol i\boldsymbol o\boldsymbol n\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\\Area\;of\;face\;\boldsymbol A\;=\;0.05m\;\times\;0.1m\;=\;0.005\;m^2\\\\Area\;of\;face\boldsymbol\;\boldsymbol B\;=\;0.2m\;\times\;0.1m\;=\;0.02\;m^2\\\\Area\;of\;face\;\boldsymbol C\;=\;0.05m\;\times\;0.2m\;=\;0.01\;m^2\\\boldsymbol F\boldsymbol o\boldsymbol r\boldsymbol m\boldsymbol u\boldsymbol l\boldsymbol a\boldsymbol:\boldsymbol-\\\boldsymbol P\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{\mathbf F}{\mathbf A}\\\\Here\;\boldsymbol F\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\boldsymbol w\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\boldsymbol m\boldsymbol{\mathit\;}\boldsymbol g\\\\F\;=\;w=\;(5\;k\;g)\;(10\;m\;s^{-2})\\\\\boldsymbol F\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\boldsymbol{50}\boldsymbol{\mathit\;}\boldsymbol N\\\\So\\\boldsymbol P\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{\boldsymbol{50}\boldsymbol{\mathit\;}\boldsymbol N}{\boldsymbol A\boldsymbol r\boldsymbol e\boldsymbol a}\\\\Pressure\;of\;Face\boldsymbol\;\boldsymbol A\boldsymbol\;=\;\frac{50\;N}{0.005\;m^2}\;\\\\=\;10000\;N\;m^{-2}\;=\;10^4\;Pa\;\\\\Pressure\;of\;Face\boldsymbol\;\boldsymbol B\boldsymbol\;=\;\frac{50\;N}{0.02\;m^2}\;\\\\=\;2500\;N\;m^{-2}\;=\;25\;\times\;10^2\;Pa\\\\Pressure\;of\;Face\boldsymbol\;\boldsymbol C\boldsymbol\;=\;\frac{50\;N}{0.01\;m^2}\\\;\\=\;5000\;N\;m^{-2}\;=\;50\;\times\;10^2\;Pa\\\\Hence\\\\\boldsymbol M\boldsymbol a\boldsymbol x\boldsymbol i\boldsymbol m\boldsymbol u\boldsymbol m\boldsymbol{\mathit\;}\boldsymbol p\boldsymbol r\boldsymbol e\boldsymbol s\boldsymbol s\boldsymbol u\boldsymbol r\boldsymbol e\boldsymbol{\mathit\;}\boldsymbol i\boldsymbol s\boldsymbol{\mathit\;}\boldsymbol o\boldsymbol n\boldsymbol{\mathit\;}\boldsymbol F\boldsymbol a\boldsymbol c\boldsymbol e\boldsymbol{\mathit\;}\boldsymbol A\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\boldsymbol{\mathit\;}\boldsymbol{10}^{\boldsymbol4}\boldsymbol{\mathit\;}\boldsymbol P\boldsymbol a\boldsymbol{\mathit\;}\\\boldsymbol M\boldsymbol i\boldsymbol n\boldsymbol i\boldsymbol m\boldsymbol u\boldsymbol m\boldsymbol{\mathit\;}\boldsymbol p\boldsymbol r\boldsymbol e\boldsymbol s\boldsymbol s\boldsymbol u\boldsymbol r\boldsymbol e\boldsymbol{\mathit\;}\boldsymbol i\boldsymbol s\boldsymbol{\mathit\;}\boldsymbol o\boldsymbol n\boldsymbol{\mathit\;}\boldsymbol F\boldsymbol a\boldsymbol c\boldsymbol e\boldsymbol{\mathit\;}\boldsymbol B\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\boldsymbol{25}\boldsymbol{\mathit\;}\boldsymbol{\mathit\times}\boldsymbol{\mathit\;}\boldsymbol{10}^{\boldsymbol2}\boldsymbol{\mathit\;}\boldsymbol P\boldsymbol a\\$$

==========================================

$$\mathit6\mathit.\mathit6\;\;\;\;What\;will\;be\;the\;height\\of\;a\;column\;in\;a\;barometer\\at\;sea\;level\;if\;mercury\;is\\replaced\;by\;water\;of\;density\\1000\;kg\;m^{-3},\;where\;density\\of\;mercury\;is\;\\13.6\;\times\;10^3\;kg\;m^{-3}\\$$

$$Density\;of\;water\;=\;\rho_w\;=\;1000\;kg\;m^{-3}\\\\Density\;of\;mercury=\;\rho_m=13.6\times10^3\;kg\;m^{-3}\\\\Height\;of\;mercury\;at\;sea\;level=h_m=760mm\\\\=\;\frac{760}{1000}\;m\;=\;0.76\;m\\\\Height\;of\;water\;at\;sea\;level=h_w=\;?\\\\P\;=\;\rho\;g\;h\\\\So\\\rho_{\mathrm w}\;g\;h_{\mathrm w}\;=\;\rho_{\mathrm m}\;g\;h_{\mathrm m}\\\\\rho_w\;\;h_w\;\;=\;\rho_m\;\;h_m\\\;\\h_w\;=\;\frac{\rho_m\;\;h_m}{\rho_w}\\\\h_w\;=\;\frac{(\;13.6\times10^3\;kg\;m^{-3}\;)\;(\;\;0.76\;m\;)}{1000\;kg\;m^{-3}}\\\\h_w\mathit\;\mathit=\mathit\;\mathit{10}\mathit.\mathit{336}\mathit\;m\\$$

==========================================

$$\mathit6\mathit.\mathit7\;\;\;\;Suppose\;in\;the\\hydraulic\;brake\;system\;of\\a\;car,\;the\;force\;exerted\\normally\;on\;its\;piston\\of\;cross-sectional\;area\;of\;\\5\;c\;m^2\;is\;\;500\;N.\;What\;will\\be\;the\;pressure\;transferred\\to\;the\;brake\;oil?\;What\;will\\be\;the\;force\;on\;the\;second\\piston\;of\;area\;of\\cross\;section\;\;20\;c\;m^2\\$$

$$Force\;of\;1st\;piston\;=\;F_1\;=\;500\;N\\Area\;of\;1st\;piston=A_1=5\;c\;m^2=5\;\times\;10^{-4}\;m^2\\Area\;of\;1st\;piston=A_2=20\;c\;m^2=20\;\times\;10^{-4}\;m^2\\Pressure\;transimitted\;to\;brake\;oil\;=\;P\;=\;?\\Force\;of\;2nd\;piston\;=\;F_2\;=\;?\\\\Pressure\mathit\;\mathit=\mathit\;\frac{Force}{Area}\\P\mathit\;\mathit=\mathit\;\frac{F_{\mathit1}}{A_{\mathit1}}\\P\;=\;\frac{500\;N}{5\;\times\;10^{-4}\;m^2}\\P\mathit\;\mathit=\mathit\;\mathit{10}^{\mathit6}\mathit\;N\mathit\;m^{\mathit-\mathit2}\;\\\\\\P\mathit\;\mathit=\mathit\;\frac{F_{\mathit2}}{A_{\mathit2}}\\F_2\;=\;P\;A_2\;\\F_2\;=\;(\;10^6\;N\;m^{-2}\;)\;(\;20\;\times\;10^{-4}\;m^2\;)\\\\F_{\mathit2}\mathit\;\mathit=\mathit\;\mathit{2000}\mathit\;N$$

==========================================

$$\mathit6\mathit.\mathit8\;\;\;Find\;the\;water\;pressure\\on\;a\;deep-sea\;diver\;at\;a\\depth\;of\;10\;m,\;where\;the\\density\;of\;sea\;water\;is\\1030\;kg\;m^{-3}\\\\$$

$$Depth\;=\;h\;=\;10\;m\\Density\;of\;sea\;water\;=\;\rho\;=\;1030\;kg\;m^{-3}\\Gravitional\;acceleration\;=\;g\;=\;10\;m\;s^{-2}\\Pressure\;=\;P\;=\;?\\\\P\mathit\;\mathit=\mathit\;\rho\mathit\;g\mathit\;h\;\\\\P\;=\;(1030\;kg\;m^{-3}\;)\;(\;10\;m\;s^{-2}\;)\;(\;10\;m\;)\\P\;=\;103000\;kg\;m\;s^{-2}\;m^{-2}\\P\;=\;1.03\;\times\;10^5\;N\;m^{-2}\;\\P\;=\;1.03\;\times\;10^5\;Pa$$

==========================================

$$6.9\;\;\;\;\;\;\;The\;area\;of\\cross\;section\;of\;the\;small\\and\;large\;pistons\;of\;a\\hydraulic\;press\;is\;respectively\\10\;c\;m^2\;and\;100\;c\;m^2.\\What\;force\;should\;be\\exerted\;on\;the\;small\;piston\\in\;order\;to\;lift\;a\;car\;of\\weight\;\;4000\;N$$

$$Area\;of\;small\;piston=A_1=10\;c\;m^2\\\\=\;\frac{10}{10000}m\;=\;0.001\;m^2\\\\Area\;of\;large\;piston=A_2=100\;c\;m^2\\\\=\;\frac{100}{10000}m\;=\;0.01\;m^2\\\\Weight\;of\;car=w=F_2=4000\;N\\\\Force\;on\;small\;piston\;=\;F_1\;=\;?\\Pressure\mathit\;\mathit=\mathit\;\frac{Force}{Area}\\P\mathit\;\mathit=\mathit\;\frac FA\\So\\\\\frac{F_1}{A_1}\;=\;\frac{F_2}{A_2}\;\\\\F_1\;=\;\frac{F_2\;A_1\;}{A_2}\\\\F_1\;=\;\frac{(\;4000\;N\;)\;(\;0.001\;m^2\;)}{0.01\;m^2}\\\\F_1\;=\;400\;N$$

==========================================

$$\mathit6\mathit.\mathit{10}\;\;\;In\;a\;hot\;air\;balloon,\;the\\following\;data\;was\;recorded.\\Draw\;a\;graph\;between\;the\\altitude\;and\;pressure\;and\\find\;out:\\(a)\;What\;would\;the\boldsymbol\;air\\pressure\;have\;been\\at\;sea\;level\;?\\(b)\;At\;what\;height\;the\;air\\pressure\;would\;have\;been\\90\;kPa\;?\\Altitude\;(m)\boldsymbol:\;\;150,\;500,\\800,\;1140,\;1300,\;1500\\Pressure\;(kPa)\boldsymbol:\;99.5,\;95.7,\\92.4,\;88.9,\;87.2,\;85.3$$

$$Pressure\;=\;P\\Slope\;=\;m\\Altitude\;=\;h\\Y\;intercept\;=\;c\\\\Lets\;first\;slove\;the\;question\;with\;the\\help\;of\;slope\;intercept\;form\\\\P\;=\;m\;h\;+\;c\\P\;=\;-\;0.00939\;h\;+\;100.99\\P\;=\;101000\;Pa\\\\P\;=\;m\;h\;+\;c\\90\;=\;-\;0.00939\;h\;+\;100.99\\h\;=\;1040.38\;m$$

==========================================

$$6.11\;\;\;\;\;\;\;If\;the\;pressure\;in\;a\\hydraculic\;press\;is\;increased\\by\;an\;additional\;10\;N\;c\;m^{-2},\\how\;much\;extra\;load\;will\;the\\output\;platform\;support\;if\\its\;cross-sectional\;area\\is\boldsymbol\;50\;c\;m^2.$$

$$\boldsymbol D\boldsymbol a\boldsymbol t\boldsymbol a\boldsymbol:\boldsymbol-\\\\Additional\;pressure\;=\;P\;=\;10\;N\;c\;m^{-2}\\=\;10^5\;N\;m^{-2}\\\\Area\;=\;A\;=\;\boldsymbol\;50\;c\;m^2\;=\;50\;\times\;10^{-4}\;m^2\\Load\;=\;F\;=\;?\\\\\boldsymbol F\boldsymbol o\boldsymbol r\boldsymbol m\boldsymbol u\boldsymbol l\boldsymbol a\boldsymbol:\boldsymbol-\\\boldsymbol P\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{\mathbf F}{\mathbf A}\\\\F\;=\;P\;A\\\\F\;=\;(\;\;10^5\;N\;m^{-2}\;)\;(\;50\;\times\;10^{-4}\;m^2\;)\\\\F\;=\;500\;N$$

==========================================

$$\mathit6\mathit.\mathit{12}\;\;The\;force\;exerted\\normally\;on\;the\;hydraulic\\brake\;system\;of\;a\;car,\\with\;its\;piston\;of\;cross\\sectional\boldsymbol\;area\;5\;c\;m^2\\is\;500\;N.\;What\;will\;be\;the:\\(a)\;\;pressure\;transferred\\to\;the\;brake\;oil\;?\\(b)\;\boldsymbol\;force\;on\;the\;brake\\piston\;of\;area\boldsymbol\;of\\cross\;section\;20\;c\;m^2$$

$$\boldsymbol D\boldsymbol a\boldsymbol t\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\\Force\;on\;1st\;piston\;=\;F_1\;=\;500\;N\\\\Area\;of\;1st\;piston\;=\;A_1\;=\;\;5\;c\;m^2\\=\;\frac5{10000}\;m^2\;=\;0.0005\;m^2\\\\Area\;of\;2nd\;piston\;=\;A_2\;=\;\;20\;c\;m^2\\=\;\frac{20}{10000}\;m^2\;=\;0.002\;m^2\\\\Pressure\;=\;P\;=?\\\\Force\;on\;2nd\;piston\;=\;F_2\;=\;?\\\\\boldsymbol F\boldsymbol o\boldsymbol r\boldsymbol m\boldsymbol u\boldsymbol l\boldsymbol a\boldsymbol{\mathit:}\boldsymbol{\mathit-}\\\boldsymbol P\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{{\boldsymbol F}_{\boldsymbol1}}{{\boldsymbol A}_{\boldsymbol1}}\\\\P\;=\;\frac{500\;N}{0.0005\;m^2}\\\\P\;=\;10^6\;N\;m^2\\\\\boldsymbol P\boldsymbol{\mathit\;}\boldsymbol{\mathit=}\boldsymbol{\mathit\;}\frac{{\boldsymbol F}_{\boldsymbol2}}{{\boldsymbol A}_{\boldsymbol2}}\\\\F_2\;=\;P\;A_2\\\\F_2\;=\;(\;10^6\;N\;m^2\;)\;(\;0.002\;m^2\;)\\\\F_2\;=\;2000\;N\\$$

====================================================================================

Check! Some important links below


 

Physics class 9 chapter 5 numerical solution

You tube lectures class 9 Sir Najam

Home Page Notespunjab.com

 

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *