10 math paper 2025 solution
10 math paper 2025 solution

10th math paper 2025

10th math paper 2025

10th math paper 2025 solution

(Section-I)

Q2.

Write short answers of any six from the following.

(i):- Solve by factorization.  5x² = 30x
5x² – 30x = 0
5x(x-6) = 0
5x=o or x-6 =0
x=0 or x=6
Solution Set ={ 0,6}

———————————————————–————–

(ii):- Define reciprocal equation and write an examples.
An equation is called Reciprocal equation, if it remains unchanged,
when x is replaced by 1/x.
For example
2x45x314x2– 5x +2 = 0 2x^4 – 5x^3 – 14x^2 + 2

——————————————————–—————–

(iii):- Write in standard form $$\frac1{x+4}+\;\frac1{x+4}\;=\;3$$
$$(x+4)\;(x-4)\;(\frac1{x+4}+\frac1{x-4})\;=\;(x+4)(x-4)\;3\\(x+4)\;(x-4)(\frac1{x+4})\;+\;(x+4)\;(x-4)(\frac1{x-4})\;=(\;x^2\;-\;16\;)\;3\\x-4\;+\;x+4\;=\;3\;x^2\;-48\\2x\;=\;3\;x^2\;-48\\0=\;3\;x^2\;-48\;-2x\\3\;x^2\;-\;2x\;-\;48\;=\;0$$

———————————————————-—————

(iv):- Find the discriminant.

4x2+10x+2=04x^2 + 10x + 2 = 0
a = 4 , b = 10 , c = 2
$$Discriminant\;=\;b^2-4ac\\Discriminant\;=\;10^2-4(4)(2)\\Discriminant\;=\;100-32\\Discriminant\;=\;68\\\\$$ \Delta = b^2 – 4ac

————————————————————————-

(v):- Evaluate:-  $$\omega^{13}+\omega^{14}-5\\\omega^{12}\omega\;+\;\omega^{12}\;\omega^2\;-\;5\\(1)\;\omega\;+\;(1)\;\omega^2\;-\;5\\\omega\;+\;\omega^2\;-\;5\\-\;1\;-\;5\\-\;6\\$$

————————————————————————-

(vi):- Form a Quadratic equation whose roots are 3 and 4.
S = sum of roots = 3+4 =7
P= Product of roots = (3)(4) = 12
x² – Sx + P = 0
x² -7x +12 = 0

————————————————————————-

(vii):- Find the value of x, if the ratios 2x+5 : 3x+4 and 3:4 are equal.
2x+5 : 3x+4 = 3:4
Product of means = Product of extremes
3( 3x+4 ) = 4 ( 2x+5 )
9x + 12 = 8x + 20
9x – 8x = 20 – 12
x = 8

————————————————————————-

(viii):- Define ratio and write an example
A ratio is a mathematical comparison of two or more quantities,
expressing how much one quantity is relative to another.
It is written in the form a:b.
For example 5meter ratio 7 meter and is written as 5:7

————————————————————————-

(ix):- Find the mean proportion between 20 and 45.
$$Mean\;Proportion\;=\;\sqrt{ab}\\Mean\;Proportion\;=\;\sqrt{20×45}\\Mean\;Proportion\;=\;\sqrt{900}\\Mean\;Proportion\;=\;30\\\\$$

====================================================================================

Q3.

Write short answers of any six from the following.

(i):- Resolve into partial fractions.
$$\frac{x-11}{(x-4)(x+3)}$$
$$\frac{x-11}{(x-4)\;(x+3)}=\;\frac A{x-4}+\frac B{x+3}\\x-11\;=\;A\;(x+3)\;+\;B\;(x-4)\\Put\;x+3\;=\;0\;i.e\;x=-3\;in\;the\;above\;equation\\-3-11\;=\;A\;(-3+3)\;+\;B(-3-4)\\-14\;=\;0\;+\;B(-7)\\\frac{-14}{-7}\;=\;B\\B\;=\;2\\x-11\;=\;A\;(x+3)\;+\;B\;(x-4)\\Put\;x-4=\;0\;i.e\;x=4\;\;in\;the\;above\;equation\\4-11\;=\;A\;(\;4+3)\;+B\;(4-4)\\-7\;=\;A\;(7)\;+\;0\\\frac{-7}7\;=\;A\\A\;=\;-1\\\frac{x-11}{(x-4)\;(x+3)}=\;\frac{-1}{x-4}+\frac2{x+3}$$

————————————————————————-

(ii):-  What are partial fractions ?
Partial fractions are components of a rational function that has been
decomposed into simpler fractions.

————————————————————————-

(iii):-  If A=N and B=W , Find A-B:
A = N = { 1,2,3,4,……..}  and  B = W = { 0,1,2,3,4,…….}
A-B = {  }

————————————————————————-

(iv):-  Find A x B if:  A = {0,2,5} , B = {-1,3}
A x B = { (0,-1) , (0,3) , (2,-1) , (2,3) , (5,-1) , (5,3)  }

————————————————————————-

(v):-  Find  $$X\;\cup\;Y\;\;if\;:\;X=\{1,7,9\}\;\;Y=\{2,4,5,9\}$$
XUY = {1,2,4,5,7,9}

————————————————————————-

(vi):-  Define an on function.
An onto function is a function where every output has at least one matching input. No output is left out.
OR
An onto function (or surjective function) is a function where every output has at least
one input that maps to it. In other words, every element in the codomain is used.
OR
An onto function (or surjective function) is a function where every element in
the codomain has at least one preimage in the domain.
OR
$$An\;onto\;function\;is\;a\;function\;where\;every\;element\;in\;the\;codomain\;has\;atleast\;one\;preimage\;in\;the\;domain\\A\;function\;f:A\rightarrow B\;is\;onto\;if,\;every\;element\;b\;in\;B\;,\;there\;exist\;one\;element\;a\;in\;A\\Such\;that\;f(a)=b\\\\$$

————————————————————————-

(vii):-  What do you mean by Harmonic Mean?
The Harmonic Mean is a type of average that is found by dividing the total number of values by
the sum of the reciprocals of those values.
$$H\;=\;\frac n{\displaystyle\underset{}{\sum\frac1{x_i}}}\\Where\;H\;i\;Harmonic\;mean\\n\;is\;total\;number\;of\;values\\x_i\;are\;the\;given\;values$$

————————————————————————-

(viii):-  Find Geometric mean of 2,4,8
$$If\;G\;is\;geometric\;Mean\;,\;then\\G\;=\;\sqrt[3]{2x4x8}\\G\;=\;\sqrt[3]{64}\\G\;=\;4\\$$

————————————————————————-

(ix):-  Find Median  1.9, 2.3, 2.5, 2.7, 2.9, 3.1
$$Median\;=\;\frac{2.5+2.7}2\\Median\;=\;\frac{5.2}2\\Median\;=\;\frac{2.6}2\\\\$$

====================================================================================

Q4.

Write short answers of any six from the following.

(i):- Define Quadrantal Angles. Give an example
$$A\;Quadrantal\;Angle\;is\;an\;angle\;whose\;Initial\;ray\;lies\;at\;positive\;x-axis\\and\;terminal\;ray\;lies\;on\;one\;of\;the\;coordinate\;axes\;(x-axis\;or\;y-axis)\\For\;example\;90\;degree.\;\\$$
(ii):- $$Convert\;into\;D\;M\;S\;form\;45.36\;degrees$$
$$45.36\;degree\;=\;45^{˚\;}\;{(0.36×60)}^´\\45.36\;degree\;=\;45^{˚\;}\;{(21.6)}^´\\45.36\;degree\;=\;45^{˚\;}\;21^´\;{(0.6×60)}^{”}\;45.36\;degree\;=\;45^{˚\;}\;21^´\;36^{”}\\$$
(iii):-  Convert Radian into degree:   3 radians.
Degrees=Radians×180π\text{Degrees} = \text{Radians} \times \frac{180}{\pi}
For 3 radians:
3×180π3×57.2958171.893 \times \frac{180}{\pi} \approx 3 \times 57.2958 \approx 171.89^\circ
So, 3 radians ≈ 171.89°.
(iv):-  What is the circular measure of the angle between the hands of a watch at 6′ O clock?
$$Angle\;between\;two\;consective\;points\;=\;\frac{\mathrm\pi}6\;radian\\measure\;of\;the\;angle\;between\;the\;hands\;of\;a\;watch\;at\;6’\;O\;clock\\=(\;\frac{\mathrm\pi}6\;rad\;)\;(\;6\;)\\=\;\mathrm\pi\;\mathrm{radian}\\$$

To understand the next part  kindly  watch this video

(v):- Define an acute angle and give an example.
$$An\;acute\;angle\;is\;an\;angle\;that\;measures\\less\;than\;90^\circ\;(\frac{\mathrm\pi}2radians)\;but\;greater\;than\;0^\circ\;(0\;radian)\\For\;example\;\;30^\circ\;(\frac{\mathrm\pi}6\;radians)\\$$
(vi):- Define tangent of a circle.
The tangent of a circle is a straight line that touches the circle at exactly one point.
(vii):-  Define a cyclic quadrilateral and interpret it with diagram.
A quadrilateral that can be inscribed in a circle is called a cyclic quadrilateral.

(viii):- Define a Regular Polygon and give an example.
A regular polygon is a polygon in which all sides are equal in length and all interior angles are equal.
A square is a regular polygon.
(ix):- The length of sides of an equilateral triangle is 5.5 cm. What is its perimeter?
The perimeter of an equilateral triangle is given by the formula:
Perimeter=3×Side length\text{Perimeter} = 3 \times \text{Side length}
Given that the side length is 5.5 cm, we calculate:
Perimeter=3×5.5=16.5 cm

(Section -II)

Note:  Attempt any three questions in all while Q.No 9 is compulsory.

Q5

(a):-  Solve the equation and check:  $$\sqrt{3x+100}\;-x\;=\;4$$
$$\sqrt{3x+100}\;-x\;=\;4\\\sqrt{3x+100}\;=\;x+4\\Taking\;square\;on\;both\;the\;sides\\({\sqrt{3x+100})\;}^2\;=\;{(x+4)}^2\\3x+100\;=\;x^2+2(x)(4)\;+4^2\\3x+100\;=\;x^2+\;8x\;+16\\3x+100\;-\;x^2-\;8x\;-16\;=\;0\\-x^2\;-5x\;+84\;=\;0\\-(x^2\;+\;5x\;-\;84)\;=\;0\\(x^2\;+\;5x\;-\;84)\;=\;0\\x^2\;+\;12x\;-7x\;-84\;=\;0\\x(x+12)-7(x+12)\;=0\\(x+12)\;(x-7)\;=\;0\\x+12\;=\;0\;\;or\;\;x-7=\;0\\x=\;-12\;\;\;or\;\;\;x=7\\Checking:-\\\sqrt{3x+100}\;-x\;=\;4\\put\;x=-12\\\sqrt{3(-12)+100}\;-(-12)\;=\;4\\\sqrt{-36+100}\;+12\;=\;4\\\sqrt{64}\;+12\;=\;4\\8+12\;=\;4\\20\;=\;4\\Which\;is\;false.\;Hence\;x=\;-12\;is\;an\;extraneous\;root.\\\sqrt{3x+100}\;-x\;=\;4\\put\;x=\;7\\\sqrt{3(7)+100}\;-7\;=\;4\\\sqrt{21+100}\;-7\;=\;4\\\sqrt{121}\;-7\;=\;4\\11-7=4\\4=4\\which\;is\;true.\;Hence\;x=7\;is\;a\;real\;root.\\Solution\;Set\;=\;\{\;7\;\}\\\\\\\\\\$$

====================================================================================

(b):- Solve by using synthetic division, if 2 is the root of equation. $$x^3\;-28x\;+\;48\;=0\\\\\\\\\\$$
$$Step\;1\;:-\\P(x)=x^3\;-28x\;+\;48\\\\\\\\\\$$

 

how to do synthetic division
how to do synthetic division
$$Step3:-\\Solve\;\;\;x^2+2x-24\;=\;0\\x^2+6x-4x-24=0\\x(x+6)-4(x+6)\;=\;0\\(x+6)(x-4)\;=\;0\\x+6\;=\;0\;\;\;or\;\;\;x-4\;=\;0\\x=-6\;\;or\;\;x=4\\Solution\;Set\;=\;\{2,4,-6\}\\\\\\\\\\$$

==============================================================================================================================

Q6

(a):-  Find x in Proportion.  8-x : 11-x  ::  16-x : 25-x
$$\\Products\;of\;means\;\;=\;\;Products\;of\;extremes\\(11-x)\;(16-x)\;=\;(8-x)\;(25-x)\\176-11x-16x+x^2\;=\;200-8x-25x+x^2\\176-27x\;=\;200\;-33x\\-27x+33x\;=\;200-176\\6x\;=\;24\\x\;=\;\frac{24}6\\x=4\\\\\\\\\\$$

====================================================================================

(b):-  Resolve into Partial fraction.  $$\frac{7x+4}{(3x+2)\;{(x+1)}^2}\\\\\\\\\\$$
$$\frac{7x+4}{(3x+2)\;{(x+1)}^2}\;=\;\frac A{3x+2}\;+\;\frac B{x+1}\;+\;\frac C{{(x+1)}^2}\\Multiplying\;both\;the\;sides\;by\;LCM\;i.e\;(3x+2)\;{(x+1)}^2\\7x+4\;=\;A\;{(x+1)}^2\;+\;B\;(3x+2)\;(x+1)\;+\;C\;(3x+2)\;\;\;……….\;Equ(i)\\Put\;3x+2\;=0\;\;in\;equation\;(i)\;\;\lbrack\;3x+2\;=\;0\;\;or\;3x=-2\;or\;x=\frac{-2}3\;\rbrack\\7(\frac{-2}3)\;+4\;=\;A\;{(\frac{-2}3+1)}^2\;+\;B\;(0)\;+\;C(0)\\\\\frac{-14}3+4\;=\;A\;{(\frac{-2+3}3)}^2\;\;\\\\\\\frac{-14+12}3\;=\;A{(\;\frac13)}^2\;\;\;\\\\\frac{-2}3=\;A(\;\frac19)\;\\\\\frac{-2}3(9)\;=\;A\;\\\\-2(3)\;=A\;\\\\A\;=\;-6\\\\\\\\$$
$$Put\;x+1\;=0\;\;in\;equation\;(i)\;\;\lbrack\;x=-1\rbrack\;\\7(-1)\;+4\;=\;A\;(0)+\;B\;(0)\;+\;C(3(-1)\;+2)\;\\-7+4\;=\;C(-3+2)\;\\-3\;=\;C(-1)\;\\\\\frac{-3}{-1}\;=\;C\;\\\\C=3\;\\\\\\\\\\\\$$
$$Expanding\;equation\;(i)\;\\\\7x+4\;=\;A\;(\;x^2\;+2x+1)\;+\;B\;(3\;x^2\;+2x\;+3x\;+2)\;+\;C\;(3x+2)\;\\\\Equating\;the\;coefficients\;of\;x^2\;\\\\0\;=\;A\;+\;3B\;\\\\After\;putting\;the\;value\;of\;A,\;we\;get\;\\\\0\;=\;-6\;+\;3B\;\\\\6\;=\;3B\;\\\\\frac63\;=\;B\;\\\\B\;=\;2\\\\\\\\\\\\$$
$$Hence\\\\\frac{7x+4}{(3x+2)\;{(x+1)}^2}\;=\;\frac{-6}{3x+2}+\;\frac2{x+1}\;+\;\frac3{{(x+1)}^2}\\\\\\\\\\\\$$

==============================================================================================================================

Q7

(a):-  $$Prove\;that\;\;B-A\;=\;B\cap A^c\;\;if;\\U\;=\;\{1,2,3,4………..,10\}\;\\A=\;\{1,3,5,7,9\}\;\\B\;=\;\{1,4,7,10\}\\\\\\\\\\\\$$
$$L.H.S\;=\;B-A\\L.H.S\;=\;\{1,4,7,10\}\;-\;\{1,3,5,7,9\}\\\\L.H.S\;\;=\;\{4,10\}\\\\A^c\;=\;U-A\\A^c\;=\;\{1,2,3,4,……,10\}\;-\;\{1,3,5,7,9\}\\\\A^c\;=\;\{2,4,6,8,10\}\\\\R.H.S\;=\;B\cap A^c\;\\R.H.S\;=\;\{1,4,7,10\}\;\cap\;\{2,4,6,8,10\}\;\\\\R.H.S\;=\;\{4,10\}\;\\\\Hence\;\;\;L.H.S\;=\;R.H.S\;\\\\\\$$

====================================================================================

Q7 (b):-  Determine standard deviation ‘S’ of the following set of numbers: 60,70,30,90,80,42
$$Number\;of\;terms\;=\;n\;=\;6\\\\X\;=\;60,70,30,90,80,42\;\;\\⅀X\;=\;60+70+30+90+80+42\;=372\;\;\;\\\\X^2\;=\;{(60)}^2,{(70)}^2,{(30)}^2,{(90)}^2,{(80)}^2,{(42)}^2\;\;\\X^2\;=\;3600,4900,900,8100,6400,1764\;\;\\\\⅀X^2\;=\;{(60)}^2+{(70)}^2+{(30)}^2+{(90)}^2+{(80)}^2+{(42)}^2\;\;\\⅀X^2\;=\;3600+4900+900+8100+6400+1764\;\;\\⅀X^2\;=\;25664\;\;\;\\\\S\tan derd\;Deviation\;=\;\sqrt{\frac{⅀X^2}n-\;{(\frac{⅀X}n)}^2}\;\;\\\\S\tan derd\;Deviation\;=\;\sqrt{\frac{25664}6-\;{(\frac{372}6)}^2}\;\\\\S\tan derd\;Deviation\;=\;\sqrt{4277.33-\;{(62)}^2}\;\;\\\\S\tan derd\;Deviation\;=\;\sqrt{4277.33-\;3844}\;\;\\\\S\tan derd\;Deviation\;=\;\sqrt{433.33}\;\\\\S\tan dard\;Deviation\;=\;20.82\\$$

==============================================================================================================================

Q8

(a):-  Find the remaining trigonometric functions if
$$CosecƟ\;=\;\frac{13}{12}\;\;and\;SecƟ\;>0\\$$
$$CosecƟ\;=\;\frac{13}{12}\;\\\Rightarrow\;SinƟ\;=\;\frac{12}{13}\;\;\\\Rightarrow\;Ɵ\;lies\;in\;2nd\;or\;\mathbf1\boldsymbol s\boldsymbol t\boldsymbol\;\boldsymbol Q\boldsymbol u\boldsymbol a\boldsymbol d\boldsymbol r\boldsymbol a\boldsymbol n\boldsymbol t\;\\\\and\;SecƟ\;>0\;\;\Rightarrow\;CosƟ\;>\;0\\\Rightarrow\;Ɵ\;lies\;in\;4th\;or\;\mathbf1\boldsymbol s\boldsymbol t\boldsymbol\;\boldsymbol Q\boldsymbol u\boldsymbol a\boldsymbol d\boldsymbol r\boldsymbol a\boldsymbol n\boldsymbol t.\\Hence\;Ɵ\;lies\;in\;\boldsymbol1\boldsymbol s\boldsymbol t\boldsymbol{\mathit\;}\boldsymbol Q\boldsymbol u\boldsymbol a\boldsymbol d\boldsymbol r\boldsymbol a\boldsymbol n\boldsymbol t.\\\\\\\\\\\\$$
$$\boldsymbol S\boldsymbol i\boldsymbol n^{\mathbf2}\boldsymbol Ɵ\boldsymbol\;\boldsymbol+\boldsymbol C\boldsymbol o\boldsymbol s^{\mathbf2}\boldsymbol Ɵ\boldsymbol\;\boldsymbol=\boldsymbol\;\mathbf1\boldsymbol\;\\\boldsymbol C\boldsymbol o\boldsymbol s^{\mathbf2}\boldsymbol Ɵ\boldsymbol\;\boldsymbol=\boldsymbol\;\mathbf1\boldsymbol\;\boldsymbol-\boldsymbol\;\boldsymbol S\boldsymbol i\boldsymbol n^{\mathbf2}\boldsymbol Ɵ\boldsymbol\;\\\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\pm\boldsymbol\;\sqrt{\boldsymbol\;\mathbf1\boldsymbol\;\boldsymbol-\boldsymbol\;\mathbf S\mathbf i\mathbf n^{\mathbf2}\mathbf Ɵ}\boldsymbol\;\boldsymbol\;\\\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\pm\boldsymbol\;\sqrt{\boldsymbol\;\mathbf1\boldsymbol\;\boldsymbol-{\boldsymbol(\boldsymbol\;\frac{\mathbf{12}}{\mathbf{13}}\boldsymbol)}^{\mathbf2}}\boldsymbol\;\boldsymbol\;\\\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\pm\boldsymbol\;\sqrt{\boldsymbol\;\mathbf1\boldsymbol\;\boldsymbol-\frac{\mathbf{144}}{\mathbf{169}}}\boldsymbol\;\\\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\pm\boldsymbol\;\sqrt{\boldsymbol\;\frac{\mathbf{169}\boldsymbol-\mathbf{144}}{\mathbf{169}}}\boldsymbol\;\\\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\pm\boldsymbol\;\sqrt{\boldsymbol\;\frac{\mathbf{25}}{\mathbf{169}}}\boldsymbol\;\\\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\pm\frac{\mathbf5}{\mathbf{13}}\boldsymbol\;\\\\\boldsymbol B\boldsymbol u\boldsymbol t\boldsymbol\;\boldsymbol\;\boldsymbol Ɵ\boldsymbol\;\boldsymbol l\boldsymbol i\boldsymbol e\boldsymbol s\boldsymbol\;\boldsymbol i\boldsymbol n\boldsymbol\;\mathbf1\boldsymbol s\boldsymbol t\boldsymbol\;\boldsymbol Q\boldsymbol u\boldsymbol a\boldsymbol d\boldsymbol r\boldsymbol a\boldsymbol n\boldsymbol t\boldsymbol.\boldsymbol\;\boldsymbol H\boldsymbol e\boldsymbol n\boldsymbol c\boldsymbol e\boldsymbol\;\\\boldsymbol\;\\\boldsymbol C\boldsymbol o\boldsymbol s\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol+\frac{\mathbf5}{\mathbf{13}}\boldsymbol\;\boldsymbol\;\\\\\boldsymbol\Rightarrow\boldsymbol\;\boldsymbol S\boldsymbol e\boldsymbol c\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{\mathbf{13}}{\mathbf5}\boldsymbol\;\\\\We\;know\;that\boldsymbol\;\boldsymbol\;\boldsymbol T\boldsymbol a\boldsymbol n\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{\mathbf S\mathbf i\mathbf n\mathbf Ɵ\boldsymbol\;}{\mathbf C\mathbf o\mathbf s\mathbf Ɵ\boldsymbol\;}\\\boldsymbol\;\boldsymbol T\boldsymbol a\boldsymbol n\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{{\displaystyle\frac{\mathbf{12}}{\mathbf{13}}}\boldsymbol\;}{{\displaystyle\frac{\mathbf5}{\mathbf{13}}}\boldsymbol\;}\boldsymbol\;\boldsymbol\;\\\\\boldsymbol T\boldsymbol a\boldsymbol n\boldsymbol Ɵ\boldsymbol\;\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{\mathbf{12}\boldsymbol\;}{\mathbf5\boldsymbol\;}\boldsymbol\;\boldsymbol\;\\\boldsymbol\Rightarrow\\\boldsymbol C\boldsymbol o\boldsymbol t\boldsymbol Ɵ\boldsymbol\;\boldsymbol=\boldsymbol\;\frac{\mathbf5}{\mathbf{12}}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$$

====================================================================================

Q8(b):-  Escribe a Circle opposite to vertex A to a triangle ABC with sides
AB = 6cm , BC = 4cm  CA = 3cm

First we’ll draw triangle

triangle with all different sides
triangle with all different sides

Extend the sides AC and AB

 

how to extend sides of triangle
how to extend sides of triangle

Bisect angle A

how to draw angle bisector
how to draw angle bisector

Now bisect angle DCB and angle EBC

draw angle bisector
how to draw angle bisector
Notes punjab
Notes punjab

Now draw a perpendicular from point I on side on one of the extended sides.

e circle
e circle

Then take I as centre draw a circle which will touch extended side internally and BC externally

how to draw escribed circle
how to draw escribed circle

circle with radius IP is the required Escribed circle ( also called e circle ).

escribed circle of triangle
escribed circle of triangle

 

==================================================================

Q9:-

Prove that perpendicular from the centre of a circle on a chord bisects it.

Given:- AB is the chord of the circle with centre at O and OM is perpendicular to AB.

Prove that perpendicular from the centre of a circle on a chord bisects it.
Prove that perpendicular from the centre of a circle on a chord bisects it.

To Prove: Length of AM is equal to length of BM.

Construction: Join A and B with O.

perpendicular from the centre of a circle on a chord bisects it.
perpendicular from the centre of a circle on a chord bisects it.

Proof:

10th math theorems
10th math theorems
theorems 10th math
theorems 10th math
=============================================================================================================================================
 Or
$$\boldsymbol P\boldsymbol r\boldsymbol o\boldsymbol v\boldsymbol e\boldsymbol\;\boldsymbol t\boldsymbol h\boldsymbol a\boldsymbol t\boldsymbol\;\boldsymbol o\boldsymbol p\boldsymbol p\boldsymbol o\boldsymbol s\boldsymbol i\boldsymbol t\boldsymbol e\boldsymbol\;\boldsymbol a\boldsymbol n\boldsymbol g\boldsymbol l\boldsymbol e\boldsymbol s\boldsymbol\;\boldsymbol o\boldsymbol f\boldsymbol\;\boldsymbol a\boldsymbol n\boldsymbol y\boldsymbol\;\boldsymbol q\boldsymbol u\boldsymbol a\boldsymbol d\boldsymbol r\boldsymbol i\boldsymbol l\boldsymbol a\boldsymbol t\boldsymbol e\boldsymbol r\boldsymbol a\boldsymbol l\boldsymbol\;\boldsymbol i\boldsymbol n\boldsymbol s\boldsymbol c\boldsymbol r\boldsymbol i\boldsymbol b\boldsymbol e\boldsymbol d\\\boldsymbol i\boldsymbol n\boldsymbol\;\boldsymbol a\boldsymbol\;\boldsymbol c\boldsymbol i\boldsymbol r\boldsymbol c\boldsymbol l\boldsymbol e\boldsymbol\;\boldsymbol a\boldsymbol r\boldsymbol e\boldsymbol\;\boldsymbol S\boldsymbol u\boldsymbol p\boldsymbol p\boldsymbol l\boldsymbol e\boldsymbol m\boldsymbol e\boldsymbol n\boldsymbol t\boldsymbol a\boldsymbol r\boldsymbol y$$
Class 10th math theorems
Class 10th math theorems
class 10th math theorems
class 10th math theorems

 

10th math paper 2025
10th math paper 2025

==============================================================================================================================

Ask any question regarding this paper in comment section. Enjoy 10th math paper 2025 solution

 

For New 9th you tube Channel Sir Najam

Home page notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *