MCQs 9th math ch2 2025
MCQs 9th math ch2 2025 will be solved in complete detail. Name of chapter 2 is logarithms. New book math class 9 chapter 2 is very important with respect to MCQs.
Q 1 Four option are given against each statement. Encircle the correct option.
(i) $$The\;s\tan dard\;form\;of\\5.2\;\times\;10^6\;is:$$
(a) 52,000 (b) 520,000 (c) 5.200,000 (d) 52,000,000
Option C is correct.
——————————————————————————-
(ii) Scientific notation of 0.00034 is :
$$(a)\;3.4\times10^3\;(b)\;3.4\times10^{-4}\\(c)\;3.4\times10^4\;(d)\;3.4\times10^{-3}$$
Option B is correct.
——————————————————————————-
(iii) The base of common logarithm is:
(a) 2 (b) 10 (c) 5 (d) e
Option B is correct.
Explanation:- Base of common logarithm is 10 and base of natural logarithm is e.
——————————————————————————-
(iv) $$Log_2\;2^3\;=\;$$
(a) 1 (b) 2 (c) 5 (d) 3
Option D is correct.
Explanation:- First we will apply power rule of logarithms.
$$Log_2\;2^3\;=\;3\;Log_2\;2$$
Log of any number with the same base will give us 1
= 3 ( 1 ) = 3
——————————————————————————-
(v) Log 100 =
(a) 2 (b) 3 (c) 10 (d) 1
Option A is correct.
Explanation:- Log 100 = Log ( (10) (10 )
Apply Log m n = Log m + Log n
= Log 10 + Log 10
= 1 + 1 + 2
——————————————————————————-
(vi) If Log 2 = 0.3010, then Log 200 is:
(a) 1.3010 (b) 0.6010 (c) 2.3010 (d) 2.6010
Option C is correct.
Explanation:- Log 200 = Log ( (2) (100) )
After applying product rule of logarithms, we get
= Log 2 + Log 100
= 0.3010 + 2 = 2.3010
——————————————————————————-
(vii) Log (0) =
(a) Positive (b) Negative (c) Zero (d) Undefined
Option D is correct.
Explanation:- Any number raised to any power will not give us zero.
$$Log_{10}0\;=\;x\\\\means\;10^x\;=\;0$$
There is no such x which gives 0.
(viii) Log 10,000 =
(a) 2 (b) 3 (c) 4 (d) 5
Option C is correct.
Explanation:-
$$Log\;10000\;=\;Log\;10^4$$
Lets use power rule of logarithms
= 4 Log 10 = 4 (1) = 4
——————————————————————————-
(ix) Log 5 + Log 3 =
(a) Log 0 (b) Log 2 (c) Log (5/3) (d) Log 15
Option D is correct.
Explanation:-
We will solve it with the help of product law of logarithms.
Log m n = Log m + Log n
Log 15 = Log ( (5) (3) ) = Log 5 + Log 3
——————————————————————————-
(x) $$3^4\;=\;81\;in\;\log arithmic\;form\;is:$$
$$(a)\;Log_34\;=\;81\;\;(b)\;Log_43\;=81\\(c)\;Log_381\;=4\;\;(d)\;Log_481=\;3$$
Option C is correct.
Explanation:-
Base will not be changed either we want to convert logarithmic form into exponential form or exponential form into logarithmic form.
$$Exponential\;form\\a^x\;=\;y\\\\Logarithmic\;form\\Log_ay\;=\;x$$
As you can see above that the base is ‘a’ both in exponential and logarithmic form.
For You tube video MCQs 9th math ch2 2025
For Review exercise 2 math class 9 new book Punjab boards
Home page Notespunjab.com