12th Class Math New Book Federal Board Exercise 2.5
12th Class Math New Book Federal Board Exercise 2.5

12th Class Math New Book Federal Board Exercise 2.5

12th Class Math New Book Federal Board Exercise 2.5

12th Class Math New Book Federal Board Exercise 2.5 solution.

Find the derivative.

Power rule:

$$\frac d{dx}(x^n)=\;n\;x^{n-1}\\$$

Product rule:-

$$\frac d{dx}\;(u\;v)=\;u\;\frac d{dx}v\;+\;v\;\frac d{dx}u\\$$

Quotient rule:-

$$\frac d{dx}\;(\frac uv)=\;\frac{\;v\;\frac d{dx}u\;-\;u\;\frac d{dx}v}{v^2}\\$$

Q1 :-

$$y=\frac1x$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(\frac1{x^2})$$

We will apply Quotient law

$$\frac{dy}{dx}=\frac{x{\displaystyle\frac d{dx}}1-1{\displaystyle\frac d{dx}}x}{x^2}$$

$$=\;\frac{x(0)-1(1)}{x^2}\\=\;\frac{0-1}{x^2}=\frac{-1}{x^2}$$

Another Method:-

$$y=\frac1x$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(\frac1x)\\\frac{dy}{dx}=\frac d{dx}x^{-1}$$

We will apply power rule

$$\frac{dy}{dx}=\;-1x^{-1-1}\\=\;-1x^{-2}\\=\;\frac{-1}{x^2}$$

==================================================================================

Q2  :-

$$y=(x^2-7)(x^2+4x+2)$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(x^2-7)(x^2+4x+2)$$

We will apply product rule

$$\frac{dy}{dx}=(x^2-7)\frac d{dx}(x^2+4x+2)\\+(x^2+4x+2)\frac d{dx}(x^2-7)$$

$$=(x^2-7)\;(2x+4+0)\\+(x^4+4x+2)\;(2x-0)\\=(x^2-7)(2x+4)+(x^4+4x+2)(2x)$$

$$=2x^3+4x^2-14x-28+2x^3+8x^2+4x\\=4x^2+12x^2-10-28$$

Another Method:-

$$y=(x^2-7)(x^2+4x+2)\\=x^4+4x^3+2x^2-17x^2-28x-14\\=x^4+4x^3-5x^2-28x-14$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(x^4+4x^3-5x^2-28x-14)$$

$$\frac{dy}{dx}=4x^3+4(3x^2\_-5(2x)-28(1)-0\\=\;4x^3+12x^2-10x-28$$

==================================================================================

Q3 :-

$$y=(7x+1)(x^4-x^3-9)$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(7x+1)(x^4-x^3-9)$$

$$\frac{dy}{dx}=(7x+1)\frac d{dx}\;(x^4-x^3-9)\\+(x^4-x^3-9)\frac d{dx}\;(7x-1)$$

$$=(7x+1)(4x^3-3x^2-0)\\+(x^4-x^3-9)(7-0)\\=28x^4-21x^3-63x\\+4x^3-3x^2-9+7x^4-7x^3-63\\=35x^4-24x^3-3x^2-126x-9\\$$

Another Method:-

$$y=(7x+1)(x^4-x^3-9)\\y=7x^5-7x^4-63x^2+x^4-x^3-9x\\=\;7x^5-6x^4-x^3-63x^2-9x\\$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(7x^5-6x^4-x^3-63x^2-9x)\\$$

$$\frac{dy}{dx}=7(5x^4)-6(4x^3)-3x^2-63(2x)-9(1)\\=\;35x^4-24x^3-3x^2-126x-9$$

==================================================================================

Q4 :-

$$y=\frac{3x+4}{x^2+1}$$

Differentiating both sides   w.r.t   x

$$\frac{dy}{dx}=\frac d{dx}\;(\frac{3x^2+5}{3x-1})\\$$

$$\style{font-size:16px}{=\frac{(x^2+1){\displaystyle\frac d{dx}}(3x+4)-(3x+4){\displaystyle\frac d{dx}}(x^2+1)}{{(x^2+1)}^2}}$$

$$=\frac{(x^2+1)(3(1)+0)-(3x+4)(2x+0)}{{(x^2+1)}^2}\\=\frac{3x^2+3-6x^2-8x}{{(x^2+1)}^2}\\$$

$$=\frac{-3x^2-8x+3}{{(x^2+1)}^2}\\$$

==================================================================================

Q5 :-

$$y=\frac{x-2}{x^4+x+1}$$

Differentiating both sides   w.r.t   x

$$\frac{dy}{dx}=\frac d{dx}(\frac{x-2}{x^4+x+1})\\\\\\$$

$$\style{font-size:12px}{=\frac{(x^4+x+1){\displaystyle\frac d{dx}}(x-2)-(x-2){\displaystyle\frac d{dx}}(x^4+x+1)}{(x^4+x+1)^2}}$$

$$=\frac{(x^4+x+1)(1-0)-(x-2)(4x^3+1+0)}{(x^4+x+1)^2}\\$$

$$=\frac{x^4+x+1-(4x^4+x-8x^3-2)}{(x^4+x+1)^2}\\$$

$$=\frac{x^4+x+1-4x^4-x+8x^3+2}{(x^4+x+1)^2}\\\frac{dy}{dx}=\frac{-3x^4+8x^2+3}{(x^4+x+1)^2}\\$$

==================================================================================

Q6 :-

$$y=\frac{3x^2+5}{3x-1}\\$$

Differentiating both sides   w.r.t   x

$$\frac{dy}{dx}=\frac d{dx}\;(\frac{3x^2+5}{3x-1})\\$$

$$=\frac{(3x-1){\displaystyle\frac d{dx}}(3x^2+5)-(3x^2+5){\displaystyle\frac d{dx}}(3x-1)}{{(3x-1)}^2}\\$$

$$\frac{dy}{dx}=\frac{(3x-1)(6x+0)-(3x^2+5)(3-0)}{{(3x-1)}^2}\\=\frac{(18x^2-6x))-9x^2-15}{{(3x-1)}^2}\\$$

$$=\frac{9x^2-6x-15}{{(3x-1)}^2}\\=\frac{3\;(3x-2x-5)}{{(3x-1)}^2}\\$$

$$\frac{dy}{dx}=\frac{3\;(3x^2-5x+3x-5)}{{(3x-1)}^2}\\=\frac{3\;(x(3x-5)(x+1)}{{(3x-1)}^2}\\$$

$$=\frac{3\;(3x-5)(x+1)}{{(3x-1)}^2}\\$$

==================================================================================

Q7 :-

$$y=(\frac1x+\frac1{x^2})(3x^2+27)\\y=3x^2+\frac{27}x+3x+\frac{27}{x^2}\\$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(3x^2+\frac{27}x+3x+\frac{27}{x^2})\\$$

$$\frac{dy}{dx}=3\frac d{dx}(x^2)+27\frac d{dx}\;(\frac1x)\\+3\frac d{dx}(x)+27\frac d{dx}\;(\frac1{x^2})$$

$$=3(2x)+27\frac d{dx}(x^{-1})+3(1)+27\frac d{dx}(x^{-2-1})\\$$

$$=6x+27(-1x^{-1-1})+3+27(-2x^{-2-1})\\=6x-27x^{-2}+3-54x^{-3}\\=6x-\frac{27}{x^2}+3-\frac{54}{x^3}$$

Another Method:- 

$$y=(\frac1x+\frac1{x^2})(3x^2+27)\\$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(\frac1x+\frac1{x^2})(3x^2+27)\\$$

$$\frac{dy}{dx}=(\frac1x+\frac1{x^2})\frac d{dx}(3x^3+27)\\+(3x^3+27)\frac d{dx}(\frac1x+\frac1{x^2})\\\\$$

$$=(\frac1x+\frac1{x^2})(3\frac d{dx}x^3+\frac d{dx}27)\\+(3x^3+27)(\frac d{dx}x^{-1}+\frac d{dx}x^{-2})\\\\$$

$$=(\frac1x+\frac1{x^2})\;(9x^2+0)\\+(3x^3+27)\;(x^{-2}+2x^{-3})\\\\$$

$$=9x+9-3x-6-27x^{-2}-54x^{-3}\\=6x-\frac{27}{x^2}-\frac{54}{x^3}+3$$

==================================================================================

Q8 :-

$$y=\frac{2-3x}{7-x}$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}\frac{2-3x}{7-x}\\\frac{dy}{dx}=\frac{(7-x)(-3)-(2-3x)(0-1)}{{(7-x)}^2}$$

$$=\frac{(7-x)(-3)-(2-3x)(-1)}{{(7-x)}^2}\\=\frac{-21+3x+2-3x}{{(7-x)}^2}\\=\frac{-19}{{(7-x)}^2}$$

==================================================================================

Q9 :-

$$y=\frac{x^2-10x+2}{x^3-x}$$

Differentiating both sides   w.r.t   x

$$\style{font-size:12px}{\frac{dy}{dx}=\frac d{dx}(\frac{x^2-10x+2}{x^3-x})}$$

$$\style{font-size:8px}{=\frac{(x^3-x){\displaystyle\frac d{dx}}(x^2-10x+2)-(x^2-10x+2){\displaystyle\frac d{dx}}(x^3-x)}{{(x^3-x)}^2}}$$

$$\style{font-size:10px}{=\frac{(x^3-x)(2x-10)-(x^2-10x+2)(3x^2-1)}{{(x^3-x)}^2}}$$

$$=\frac{2x^4-10x^3-2x^2+10x-(3x^4-x^2-30x^3+10x+6x^2-2}{{(x^3-x)}^2}$$

$$=\frac{-x^4+20x^3-7x^2+2}{{(x^3-x)}^2}$$

==================================================================================

Q10 :-

$$y=\frac{x^4+2x^3-1}{x^2}$$

Differentiating both sides   w.r.t   x

$$\frac{dy}{dx}=\frac d{dx}(\frac{x^4+2x^3-1}{x^2})$$

$$=\frac{x^2{\displaystyle\frac d{dx}}(x^4+2x^3-1)-(x^4+2x^3-1){\displaystyle\frac d{dx}}x^2}{{(x^2)}^2}$$

$$=\frac{x^2(4x^3+2(3x^2)-0)-(x^4+2x^3-1).2x}{x^4}$$

$$=\frac{x^2(4x^3+6x^2)-2x(x^4+2x^3-1)}{x^4}\\=\frac{x\left\{x(4x^3+6x^2)-2(x^4+2x^3-1)\right\}}{x^4}$$

$$\frac{dy}{dx}=\frac{x\;(4x^4+6x^3-2x^4-4x^3+2)}{x^4}\\=\frac{4x^4-2x^4+6x^3-4x^3+2}{x^3}$$

$$=\frac{2x^4+2x^3+2}{x^3}\\=\frac{2\;(x^4+x^3+1)}{x^3}$$

$$=2\;(x+1+\frac1{x^3})\\=\;2x+2+\frac2{x^3}$$

Another Method:- 

$$y=\frac{x^4+2x^3-1}{x^2}\\y=x^2+2x-\frac1{x^2}$$

$$\frac d{dx}y=\frac d{dx}(x^2+2x-\frac1{x^2})\\\frac{dy}{dx}=\frac d{dx}x^2+\frac d{dx}2x-\frac d{dx}x^{-2}$$

$$=\;2x+2(1)\;-(-2x^{-3})\\=2x+2+\frac2{x^3}$$

==================================================================================

Q11 :-

$$y=\frac{10}{{(x^3-10)}^9}$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}\frac{10}{{(x^3-10)}^9}$$

$$\frac{dy}{dx}=\frac{{(x^3-10)}^9{\displaystyle\frac d{dx}}(10){\displaystyle\frac d{dx}}{(x^3-10)}^9}{\left\{{(x^3-10)}^9\right\}^2}$$

$$=\frac{{(x^3-10)}^9(0)-10.9{(x^3-10)}^{9-1}{\displaystyle\frac d{dx}}{(x^3-10)}}{{(x^3-10)}^{18}}$$

$$=\frac{0-9{0\;(x^3-10)}^8{(3x^2-0)}}{{(x^3-10)}^{18}}$$

$$=\frac{-27{0\;x^2(x^3-10)}^8}{{(x^3-10)}^{18}}\\=\frac{-270x^2}{{(x^3-10)}^{10}}$$

Another Method:-

$$y=\frac{10}{{(x^3-10)}^9}\\y=10\;{(x^3-10)}^{-9}$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}10\;{(x^3-10)}^{-9}\\\frac{dy}{dx}=10\frac d{dx}{(x^3-10)}^{-9}$$

$$\frac{dy}{dx}=10\;(-9\;{(x^3-10)}^{-9-1}\frac d{dx}(x^3-10)\;)$$

$$=-90\;{(x^3-10)}^{-10}(3x^2-0)\\=-270\;x^2{(x^3-10)}^{-10}$$

$$=\frac{-270x^2}{{(x^3-10)}^{10}}$$

==================================================================================

Q12 :-

$$y=\frac{{(x^2+1)}^2}{3x-2}$$

Differentiating both sides   w.r.t   x

$$\frac{dy}{dx}=\frac d{dx}(\frac{{(x^2+1)}^2}{3x-2})$$

$$=\frac{(3x-2){\displaystyle\frac d{dx}}{(x^2+1)}^2-{(x^2+1)}^2{\displaystyle\frac d{dx}}(3x-2)}{{(3x-2)}^2}$$

$$=\frac{(3x-2){\displaystyle.2}{(x^2+1)}^{2-1}{\displaystyle\frac d{dx}}{(x^2+1)-(x^2+1)}^2(3-0)}{{(3x-2)}^2}$$

$$=\frac{(3x-2){\displaystyle\;2}{(x^2+1)}{(2x+0)-(x^2+1)}^2(3)}{{(3x-2)}^2}$$

$$=\frac{{(x-1)}^2{\displaystyle\frac d{dx}}{(x+1)}^2-{(x+1)}^2{\displaystyle\frac d{dx}}{(x-1)}^2}{\left\{{(x-1)}^2\right\}^2}$$

$$=\frac{{(x-1)}^2.2{(x+1)}^{2-1}{\displaystyle\frac d{dx}}(x+1).2{(x-1)}^{2-1}{\displaystyle\frac d{dx}}(x-1)}{{(x-1)}^4}$$

$$=\frac{2{(x-1)}^2(x+1)(1)-2{(x+1)}^2(x-1)(1)}{{(x-1)}^4}$$

$$=\frac{2(x-1)(x+1)\;(\;(x-1)\;(x+1)\;)}{{(x-1)}^4}$$

$$=\frac{2(x+1)\;\;(x-1-x-1)}{{(x-1)}^3}\;\\=\frac{-4(x+1)}{{(x-1)}^3}$$

$$\;\frac{dy}{dx}=\frac{4x(3x-2)(x^2+1)-3{(x^2+1)}^2}{{(3x-2)}^2}$$

$$\;\frac{dy}{dx}=\frac{(x^2+1)(12x^2-8x-3x^2-3)}{{(3x-2)}^2}$$

$$\;\frac{dy}{dx}=\frac{(x^2+1)(9x^2-8x-3)}{{(3x-2)}^2}$$

==================================================================================

Q13 :-

$$y=\frac{{(x+1)}^2}{{(x-1)}^2}$$

$$y={(\frac{x+1}{x-1})}^2$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}{(\frac{x+1}{x-1})}^2\\\frac{dy}{dx}=2{(\frac{x+1}{x-1})}^{2-1}\frac d{dx}(\frac{x+1}{x-1})$$

$$=2(\frac{x+1}{x-1})\frac{(x-1){\displaystyle\frac d{dx}}(x+1)-(x+1){\displaystyle\frac d{dx}}(x-1)}{{(x-1)}^2}$$

$$=2\;(\frac{x+1}{x-1})\frac{(x-1)(1)-(x+1)(1)}{{(x-1)}^2}$$

$$\frac{dy}{dx}=2\;(\frac{x+1}{x-1})\frac{x-1-x-1}{{(x-1)}^2}\\=2(\frac{x+1}{x-1})(\frac{-2}{{(x-1)}^2})$$

$$=\frac{-4(x+1)}{{(x-1)}^3}$$

==================================================================================

Find slope of tangent at the indicated point.

Q14 :-

$$y=\frac{4x-1}x,\;x=-1\\y=\frac{4x}x-\frac1x\\y=4-x^{-1}$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}(4-x^{-1})\\\\\\$$

$$\frac{dy}{dx}=0-(-1x^{-1-1})\\=0\;+\;x^{-2}\\\\\\$$

$$\frac{dy}{dx}=\frac1{x^2}\\\frac{dy}{dx}=\frac1{{(-1)}^2}\\=\frac11=1$$

==================================================================================

Q15 :-

$$y=\frac{54}{x^2+1},\;x=2\\y=54{(x^2+1)}^{-1}$$

Differentiating both sides   w.r.t   x

$$\frac d{dx}y=\frac d{dx}54{(x^2+1)}^{-1}$$

$$\frac{dy}{dx}=54\;(-1{(x^2+1)}^{-1-1}\frac d{dx}(x^2+1)\;)$$

$$=-54\;{(x^2+1)}^{-2}(2x+0)\\=-108x\;{(x^2+1)}^{-2}\;\;$$

$$\frac{dy}{dx}=\frac{-108x}{{(x^2+1)}^2}\\\frac{dy}{dx}=\frac{-108x}{(\;{{(2)}^2+1)}^2}$$

$$=\frac{-108(2)}{5\times5}\\=\frac{-216}{25}$$

==================================================================================

Q16 :-

$$y=\frac{2x+5}{x+2},\;x=1$$

$$\frac{dy}{dx}=\frac d{dx}(\frac{2x+5}{x+2})$$

$$=\frac{(x+2){\displaystyle\frac d{dx}}(2x+5)-(2x+5){\displaystyle\frac d{dx}}(x+2)}{{(x+2)}^2}$$

$$=\frac{(x+2)(2)-(2x+5)(1)}{{(x+2)}^2}\\=\frac{2x+4-2x-5}{(x+2)^2}$$

$$\frac{dy}{dx}=\frac{-1}{{(x+2)}^2}\\\frac{dy}{dx}=\frac{-1}{{(1+2)}^2}$$

$$\frac{dy}{dx}=\frac{-1}9\\$$

==================================================================================

Q17 :-

$$y=(2\sqrt x+1)(x^3-6),\;x=0\\y=(2x^\frac72-12x^\frac12+x^3-6)\\$$

$$\frac d{dx}y=\frac d{dx}(2x^\frac72-12x^\frac12+x^3-6)\\$$

$$=2.\frac72x^{\frac72-1}-12.\frac12x^{\frac12-1}\\+3x^{3-1}-0\\$$

$$=7x^\frac52-6x^\frac{-1}2+3x^2\\\frac{dy}{dx}=7x^\frac52-\frac6{\sqrt x}+3x^2\\$$

$$\frac{dy}{dx}=7{(0)}^\frac52-\frac6{\sqrt x}+3{(0)}^2\;\frac{dy}{dx}=0-\frac60+0\\\frac{dy}{dx}=-\infty\\$$

==================================================================================

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *