12th Class Math New Book Federal Board Exercise 2.6
12th Class Math New Book Federal Board Exercise 2.6

12th Class Math New Book Federal Board Exercise 2.6

12th Class Math New Book Federal Board Exercise 2.6

12th Class Math New Book Federal Board Exercise 2.6

Lets check the derivative of trigonometric functions first.

$$\frac d{dx}(Sin\;x)\;=\;Cos\;x\\\frac d{dx}(Cos\;x)\;=\;-Sin\;x\\\frac d{dx}(Tan\;x)\;=\;Sec^2\;x\\\frac d{dx}(Cot\;x)\;=\;-Cosec^2\;x\\\frac d{dx}(Ssc\;x)\;=\;Sec\;x\;Tan\;x\\\frac d{dx}(Cosec\;x)\;=-Cosecx\;Cotx$$

Find the derivative of the given functions.

Q1 :-

$$y=x^2-C\mathrm{os}x$$

$$\frac d{dx}y=\frac d{dx}(x^2-C\mathrm{os}x)\\\frac{dy}{dx}=\frac d{dx}x^2-\frac d{dx}Cosx$$

$$=2x^{2-1}-(-Sinx)\\=2x+Sinx$$

==========================================

Q2 :-

$$y=4x^3+x+Sinx$$

$$\frac d{dx}y=\frac d{dx}(4x^3+x+Sinx)\\\frac{dy}{dx}=\frac d{dx}4x^3+\frac d{dx}x+\frac d{dx}Sinx$$

$$=4(3x^{3-1})+1+Cosx\\=12x^2+1+Cosx$$

==========================================

Q3 :-

$$y=3\;Cosx-5\;Cotx$$

$$\frac d{dx}y=\frac d{dx}(3\;Cosx-5\;Cotx)\\\frac{dy}{dx}=\frac d{dx}(3\;Cosx)-\frac d{dx}(5\;Cotx)$$

$$=3\frac d{dx}Cosx-5\frac d{dx}Cotx\\=3(-Sinx)-5(-Cosec^2x)\\=-3\;Sinx+5\;Cosec^2x$$

==========================================

Q4 :-

$$y=\;Sinx\;Cosx$$

$$\frac d{dx}y=\frac d{dx}\;Sinx\;Cosx$$

$$\frac{dy}{dx}=Sinx\frac d{dx}Cosx\\+\;Cosx\frac d{dx}Sinx$$

$$=Sinx\;(-Sinx)+Cosx(Cosx)\\=-Sin^2x+Cos^2x\\=Cos^2x-Sin^2x\\=Cos\;2x$$

Another Method:-

$$y=\;Sinx\;Cosx$$

$$y=\frac{2\;Sinx\;Cosx}2$$

$$\frac d{dx}y=\frac d{dx}\frac{1\;}2Sin\;2x$$

$$=\frac{1\;}2\frac d{dx}Sin\;2x\\=\frac12Cos\;2x\frac d{dx}2x$$

$$=\frac12Cos\;2x\;(2)\\=Cos\;2x$$

==========================================

Q5 :-

$$y=(x^2+Sinx)\;Secx$$

$$\frac d{dx}y=\frac d{dx}(x^2+Sinx)\;Secx$$

$$\frac{dy}{dx}=(x^2+Sinx)\;\frac d{dx}\;Secx\\+\;Secx\frac d{dx}(x^2+Sinx)\;$$

$$\frac{dy}{dx}=(x^2+Sinx)\;(Secx\;\tan x)\\+Secx(\frac d{dx}x^2+\frac d{dx}Sinx)$$

$$\frac{dy}{dx}=(x^2+Sinx)\;(Secx\;\tan x)\\+Secx\;(2x+Cosx)\\\\$$

$$\frac{dy}{dx}=x^2Secx\;\tan x+Sinx\;Secx\;\tan x\\+2x\;Secx\;+Secx.Cosx\\\\$$

$$=x^2\frac1{Cosx}.\frac{Sinx}{Cosx}+Sinx.\frac1{Cosx}.\frac{Sinx}{Cosx}\\+2x.\frac1{Cosx}+Secx.Cosx\\\\$$

$$=x^2\frac{Sinx}{Cos^2x}+\frac{Sin^2x}{Cos^2x}\\+\frac{2x}{Cosx}+\frac1{Cosx}.Cosx\\\\$$

$$=x^2\frac{Sinx}{Cos^2x}+\frac{Sin^2x}{Cos^2x}\\+\frac{2x}{Cosx}+1\\\\$$

Another Method:-

$$y=(x^2+Sinx)\;Secx$$

$$y=x^2\;Secx+Sinx.Secx\\=x^2Secx\;+Sinx.\frac1{Cosx}\\=x^2Secx+\tan x$$

$$\frac d{dx}y=\frac d{dx}(x^2Secx+\tan x)\\\frac{dy}{dx}=\frac d{dx}(x^2Secx)\frac d{dx}(\tan x)\\\\$$

$$=x^2\frac d{dx}Secx+Secx\frac d{dx}x^2+Sec^2x\\\\$$

$$\frac{dy}{dx}=x^2(Secx\;\tan x)+Secx\;(2x)+Sec^2x\\=x^2Sec\;\tan x+2x\;Secx+Sec^2x\\\\$$

==========================================

Q6 :-

$$y=\frac{5-Cosx}{5+Sinx}\\\\$$

$$\frac{dy}{dx}=\frac d{dx}(\frac{5-Cosx}{5+Sinx})\\\\$$

$$\style{font-family:’Times New Roman’}{\style{font-size:8px}{\\=\frac{(5+Sinx){\displaystyle\frac d{dx}}(5-Cosx)-(5-Cosx){\displaystyle\frac d{dx}}(5+Sinx)}{{(5+Sinx)}^2}\\}}$$

$$=\frac{(5+Sinx)\;Sinx-(5-Cosx)\;Cosx}{{(5+Sinx)}^2}\\\\$$

$$=\frac{5+Sinx+Sin^2x-5Cosx+\;Cos^2x}{{(5+Sinx)}^2}\\=\frac{5(\;Sinx-Cosx\;)+1}{{(5+Sinx)}^2}\\\\$$

==========================================

Q7 :-

$$y=\frac{Secx}{1+\tan x}$$

$$\style{font-family:’Times New Roman’}{\style{font-size:12px}{\frac{dy}{dx}=\frac d{dx}(\frac{Secx}{1+\tan x})}}$$

$$\style{font-family:’Times New Roman’}{\style{font-size:8px}{=\frac{(1+\tan x){\displaystyle\frac d{dx}}Secx-Secx{\displaystyle\frac d{dx}}(1+\tan x)}{{(1+\tan x)}^2}}}$$

$$=\frac{(1+\tan x)\;(Secx\;\tan x)-Secx(Sec^2x)}{{(1+\tan x)}^2}$$

$$\frac{dy}{dx}=\frac{Secx(\tan x\;+\tan^2x-Sec^2x)}{{(1+\tan x)}^2}$$

$$\frac{dy}{dx}=\frac{Secx(\tan x\;+\tan^2x-(1+\tan^2x)}{{(1+\tan x)}^2}$$

$$=\frac{Secx(\tan x\;+\tan^2x-1-\tan^2x)}{{(1+\tan x)}^2}\\=\frac{Secx\;(\tan x-1)}{{(1+\tan x)}^2}$$

Another Method:-

$$y=\frac{Secx}{1+\tan x}$$

$$y=\frac1{\displaystyle\frac{Cosx}{1+{\displaystyle\frac{Sinx}{Cosx}}}}$$

$$=\frac1{\displaystyle\frac{Cosx}{\displaystyle\frac{Cosx+Sinx}{Cosx}}}$$

$$=\frac1{Cosx}\times\frac{Cosx}{Cosx+Sinx}\\=\frac1{Cosx+Sinx}$$

$$y={(Cosx+Sinx)}^{-1}$$

$$\frac d{dx}y=\frac d{dx}{(Cosx+Sinx)}^{-1}$$

$$\frac{dy}{dx}=-1\;(Cosx+Sinx)\frac d{dx}{(Cosx+Sinx)}$$

$$=-1\;{(Cosx+Sinx)}^{-2}\;(-Sinx+Cosx)$$

$$=\frac{-1\;}{{(Cosx+Sinx)}^2}.\;(-Sinx+Cosx)$$

$$=\frac{Sinx+Cosx\;}{{(Cosx+Sinx)}^2}$$

==========================================

Q8 :-

$$y=\frac{Sinx}{x^2+Sinx}$$

$$\frac{dy}{dx}=\frac d{dx}(\frac{Sinx}{x^2+Sinx})$$

$$\style{font-family:’Times New Roman’}{\style{font-size:8px}{=\frac{(x^2+Sinx){\displaystyle\frac d{dx}}Sinx-Sinx{\displaystyle\frac d{dx}}(x^2+Sinx)}{{(x^2+Sinx)}^2}}}$$

$$=\frac{(x^2+Sinx)Cosx-Sinx\;(2x+Cosx)}{{(x^2+Sinx)}^2}$$

$$=\frac{x^2Cosx+Sinx\;Cosx-2x\;Sinx-Sinx\;Cosx}{{(x^2+Sinx)}^2}$$

$$=\frac{x\;(x\;Cosx-2\;Sinx)}{{(x^2+Sinx)}^2}$$

==========================================

Q9 :-

$$y=\frac{Cotx}{x+1}$$

$$\frac d{dx}y=\frac d{dx}\frac{Cotx}{x+1}$$

$$\frac{dy}{dx}=\frac{(x+1){\displaystyle\frac d{dx}}Cotx-Cotx{\displaystyle\frac d{dx}}(x+1)}{{(x+1)}^2}$$

$$\frac{dy}{dx}=\frac{(x+1)\;(-Cosec^2x)-Cotx\;(1)}{{(x+1)}^2}$$

$$\frac{dy}{dx}=\frac{-x\;Cosec^2x-Cosec^2x-Cotx\;}{{(x+1)}^2}$$

$$=\frac{-x\;Cosec^2x-(1+Cot^2x)-Cotx}{{(x+1)}^2}$$

$$=\frac{-x\;Cosec^2x-1-Cot^2x-Cotx}{{(x+1)}^2}$$

==========================================

Q10 :-

$$y=(1+Cosx)\;(x-Sinx)$$

$$\frac d{dx}y=\frac d{dx}(1+Cosx)\;(x-Sinx)$$

$$\frac{dy}{dx}=(1+Cosx)\;\frac d{dx}(x-Sinx)\\+(x-Sinx)\frac d{dx}(1+Cosx)$$

$$=(1+Cosx)(1-Cosx)\;\\+(x-Sinx)\;(-Sinx)$$

$$=1-Cos^2x+Sin^2x-x\;Sinx\\$$

==========================================

Lets check the derivative of inverse trigonometric functions

$$\frac d{dx}Sin^{-1}x\;\;=\frac1{\sqrt{1-x^2}}\\\\\frac d{dx}Cos^{-1}x=\frac{-1}{\sqrt{1-x^2}}\\\\\frac d{dx}\tan^{-1}x\;=\frac1{1+x^2}\\\\\frac d{dx}Cot^{-1}x\;\;=\frac{-1}{1+x^2}\\\\\frac d{dx}Sec^{-1}x\;=\frac1{x\sqrt{x^2-1}}\\\\\frac d{dx}Cosec^{-1}x\;=\frac{-1}{x\sqrt{x^2-1}}$$

Q11 :-

$$y=Sin^{-1\;}(5x-1)$$

$$\frac d{dx}y=\frac d{dx}Sin^{-1\;}(5x-1)$$

$$\frac{dy}{dx}=\frac1{\sqrt{1-{(5x-1)}^2}}\frac d{dx}(5x-1)$$

$$=\frac1{\sqrt{1-(25x^2+1-10x)}}$$

$$=\frac5{\sqrt{-25x^2+10x}}$$

==========================================

Q12 :-

$$y=4\;Cot^{-1\;}\frac x2$$

$$\frac d{dx}y=\frac d{dx}4\;Cot^{-1\;}(\frac x2)$$

$$\frac{dy}{dx}=4\frac d{dx}\;Cot^{-1\;}(\frac x2)$$

$$\frac{dy}{dx}=4\frac{-1}{1+{({\displaystyle\frac x2})}^2}\frac d{dx}\;(\frac x2)$$

$$=\frac{-4}{1+{\displaystyle\frac{x^2}4}}.\frac12\frac d{dx}x$$

$$=\frac{-4}{\displaystyle\frac{4+x^2}4}.\frac12(1)$$

$$=\frac{-8}{4+x^2}$$

==========================================

Q13 :-

$$y=\frac{Sin^{-1}x}{Sinx}$$

$$\frac d{dx}y=\frac d{dx}\frac{Sin^{-1}x}{Sinx}$$

$$\frac{dy}{dx}=\frac{Sinx{\displaystyle\frac d{dx}}Sin^{-1}x-Sin^{-1}x{\displaystyle\frac d{dx}}Sinx}{{(Sinx)}^2}\\\\$$

$$=\frac{Sinx{\displaystyle\frac1{\sqrt{1-x^2}}-}Sin^{-1}x.Cosx}{{(Sinx)}^2}\\\\$$

$$=\frac{Sinx-\sqrt{1-x^2}Cosx.Sin^{-1}x}{\displaystyle\frac{\sqrt{1-x^2}}{Sin^2x}}$$

==========================================

Q14 :-

$$y=\frac{Sec^{-1}x}x$$

$$\frac d{dx}y=\frac d{dx}\frac{Sec^{-1}x}x$$

$$\frac{dy}{dx}=\frac{x{\displaystyle\frac d{dx}}Sec^{-1}x-Sec^{-1}x{\displaystyle\frac d{dx}}x}{x^2}$$

$$=\frac{x{\displaystyle\frac1{x\sqrt{x^2-1}}}-Sec^{-1}x.1}{x^2}$$

$$=\frac{1-\sqrt{x^2-1}-Sec^{-1}x}{x^2\sqrt{x^2-1}}$$

==========================================

Q15 :-

$$y=x\;Sin^{-1}x+Cos^{-1}x\\y=x(Sin^{-1}x+Cos^{-1}x)$$

$$\frac d{dx}y=x\frac d{dx}(Sin^{-1}x+Cos^{-1}x)\\+(Sin^{-1}x+Cos^{-1}x)\frac d{dx}x$$

$$\frac{dy}{dx}=x(\frac1{\sqrt{1-x^2}}+\frac{-1}{\sqrt{1-x^2}})\\+(Sin^{-1}x+Cos^{-1}x)\;1$$

$$=x(0)+Sin^{-1}x+Cos^{-1}x\\=Sin^{-1}x+Cos^{-1}x$$

==========================================

Q16 :-

$$y=\frac1{\tan^{-1}\;x^2}$$

$$\frac d{dx}y=\frac d{dx}\frac1{\tan^{-1}\;x^2}$$

$$\frac{dy}{dx}=\frac{\tan^{-1}\;x^2{\displaystyle\frac d{dx}}1-1{\displaystyle\frac d{dx}}\tan^{-1}\;x^2}{{(\tan^{-1}\;x^2)}^2}$$

$$=\frac{\tan^{-1}\;x^2(0)-1{\displaystyle\frac1{1+{(x^2)}^2}}.{\displaystyle\frac d{dx}}\;x^2}{{(\tan^{-1}\;x^2)}^2}$$

$$=\frac{{\displaystyle\frac1{1+x^4}}.2x}{{(\tan^{-1}x^2)}^2}\\=\frac{-2x}{(1+x^4){(\tan^{-1}x^2)}^2}$$

Another Method:-

$$y=\frac1{\tan^{-1}x^2}$$

$$\frac d{dx}y=\frac d{dx}{(\tan^{-1}x^2)}^{-1}\\\\$$

$$\frac{dy}{dx}=-1\;{(\tan^{-1}x^2)}^{-1-1}\frac d{dx}\tan^-x^2$$

$$=-1\;{(\tan^{-1}x^2)}^{-2}\frac1{1+{(x^2)}^2}\frac d{dx}x^2$$

$$=\frac{-1}{{(\tan^{-1}x^2)}^2}.\frac1{1+x^4}.2x$$

$$=\frac{-2x}{(1+x^4){(\tan^{-1}x^2)}^2}$$

==========================================

Check! Some important links below


Video solution 12th Class Math New Book Federal Board Exercise 2.6

Home Page notespunjab.com

Leave a Comment

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *